N. Kh. Rozov
Yaroslavl State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N. Kh. Rozov.
Differential Equations | 2017
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov
We study a special class of diffeomorphisms of an annulus (the direct product of a ball in ℝk, k ≥ 2, by an m-dimensional torus). We prove the so-called annulus principle; i.e., we suggest a set of sufficient conditions under which each diffeomorphism in a given class has an m-dimensional expanding hyperbolic attractor.
Differential Equations | 2007
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov
Here e > 0 is a small parameter, the functions H(x, y) and f(t, x, y), g(t, x, y) are jointly infinitely differentiable with respect to (x, y) ∈ G and (t, x, y) ∈ R × G, respectively, where G ⊂ R is some domain. In addition, we assume that the perturbations f and g are periodic in t with some period T0 > 0. The main restrictions under which system (1) will be studied are stated for the limit Hamiltonian system ẋ = H ′ y(x, y), ẏ = −H ′ x(x, y). (2)
Differential Equations | 2005
D. S. Glyzin; S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov
Differential Equations | 2003
A. Yu. Kolesov; A. N. Kulikov; N. Kh. Rozov
Differential Equations | 2007
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov
Differential Equations | 2005
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov
Differential Equations | 2002
A. Yu. Kolesovand; N. Kh. Rozov
Differential Equations | 2003
A. Yu. Kolesov; A. N. Kulikov; N. Kh. Rozov
Differential Equations | 2006
A. Yu. Kolesov; N. Kh. Rozov
Differential Equations | 2002
A. Yu. Kolesov; N. Kh. Rozov