Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where N. Krotkov is active.

Publication


Featured researches published by N. Krotkov.


Journal of Geophysical Research | 1999

Distribution of UV radiation at the Earth's surface from TOMS-measured UV-backscattered radiances

Jay R. Herman; N. Krotkov; E. Celarier; D. Larko; Gordon Labow

Daily global maps of monthly integrated UV-erythemal irradiance (290–400 nm) at the Earths surface are estimated using the ozone amount, cloud transmittance, aerosol amounts, and surface reflectivity from the solar UV radiation backscattered from the Earths atmosphere as measured by the total ozone mapping spectrometer (TOMS) and independently measured values of the extraterrestrial solar irradiance. The daily irradiance values at a given location show that short-term variability (daily to annual) in the amount of UV radiation, 290–400 nm, reaching the Earths surface is caused by (1) partially reflecting cloud cover, (2) haze and absorbing aerosols (dust and smoke), and (3) ozone. The reductions of UV irradiance estimated from TOMS data can exceed 50 ± 12% underneath the absorbing aerosol plumes in Africa and South America (desert dust and smoke from biomass burning) and exceeded 70 ± 12% during the Indonesian fires in September 1997 and again during March 1998. Recent biomass burning in Mexico and Guatemala have caused large smoke plumes extending into Canada with UV reductions of 50% in Mexico and 20% in Florida, Louisiana, and Texas. Where available, ground-based Sun photometer data show similar UV irradiance reductions caused by absorbing aerosol plumes of dust and smoke. Even though terrain height is a major factor in increasing the amount of UV exposure compared to sea level, the presence of prolonged clear-sky conditions can lead to UV exposures at sea level rivaling those at cloudier higher altitudes. In the equatorial regions, ±20°, the UV exposures during the March equinox are larger than during the September equinox because of increased cloudiness during September. Extended land areas with the largest erythemal exposure are in Australia and South Africa where there is a larger proportion of clear-sky days. The large short-term variations in ozone amount which occur at high latitudes in the range ±65° cause changes in UV irradiance comparable to clouds and aerosols for wavelengths between 280 nm and 300 nm that are strongly absorbed by ozone. The absolute accuracy of the TOMS monthly erythemal exposure estimates over a TOMS field of view is within ±6%, except under UV-absorbing aerosol plumes (dust and smoke) where the accuracy is within ±12%. The error caused by aerosols can be reduced if the height of the aerosol plume is more accurately known. The TOMS estimated irradiances are compared with ground-based Brewer spectroradiometer data obtained at Toronto, Canada. The Brewer irradiances are systematically 20% smaller than TOMS irradiance estimates during the summer months. An accounting of systematic errors brings the Brewer and TOMS irradiances into approximate agreement within the estimated instrumental uncertainties for both instruments.


Journal of Geophysical Research | 1998

Satellite estimation of spectral surface UV irradiance in the presence of tropospheric aerosols: 1. Cloud‐free case

N. Krotkov; Pawan K. Bhartia; Jay R. Herman; Vitali E. Fioletov; James B. Kerr

The algorithm for determining spectral UVA (320-400 nm) and UVB (290-320 nm) flux in cloud-free conditions is discussed, including estimates of the various error sources (uncertainties in ground reflectivity, ozone amount, ozone profile shape, surface height, and aerosol attenuation). It is shown that the Brewer-measured spectral dependence of UV flux can be accurately reproduced using just total column ozone amount and the solar flux spectrum. The presence of aerosols tends to reduce the logarithm of the absolute UV flux linearly with aerosol optical depth. Using Brewer measurements of UV flux and aerosol optical depth on clear days at Toronto, the estimated slope falls in the range 0.2 to 0.3 (aerosol single-scattering albedo about 0.95). The Brewer measurements of UV flux can be reproduced using the aerosol model derived within uncertainties of the instrument calibration. We have applied the algorithm to the data collected by the total ozone mapping spectrometer (TOMS) instruments that have been flown by NASA since November 1978. It was demonstrated that in the absence of clouds and UV-absorbing aerosols, TOMS measurements of total column ozone and 380 nm (or 360 nm) radiances can be used in conjunction with a radiative transfer model to provide estimates of surface spectral flux to accuracies comparable to that of typical ground-based instruments. A newly developed technique using TOMS aerosol index data also allows estimation of UV flux transmission by strongly absorbing aerosols. The results indicate that over certain parts of the Earth, aerosols can reduce the UV flux at the surface by more than 50%. Therefore the most important need for reducing errors in TOMS-derived surface UVB spectra is to improve the understanding of UV aerosol attenuation.


web science | 2003

International Photolysis Frequency Measurement and Model Intercomparison (IPMMI): Spectral actinic solar flux measurements and modeling

A. F. Bais; Sasha Madronich; J. H. Crawford; Samuel R. Hall; Bernhard Mayer; M. van Weele; Jacqueline Lenoble; Jack G. Calvert; C. A. Cantrell; Richard E. Shetter; Andreas Hofzumahaus; Peter Koepke; Paul S. Monks; G. J. Frost; Richard McKenzie; N. Krotkov; Arve Kylling; William H. Swartz; Steven A. Lloyd; G. G. Pfister; T. J. Martin; E.‐P. Roeth; Erik Griffioen; Ansgar Ruggaber; Maarten C. Krol; Alexander Kraus; Gavin D. Edwards; M. Mueller; Barry Lefer; P. V. Johnston

[1] The International Photolysis Frequency Measurement and Model Intercomparison (IPMMI) took place in Boulder, Colorado, from 15 to 19 June 1998, aiming to investigate the level of accuracy of photolysis frequency and spectral downwelling actinic flux measurements and to explore the ability of radiative transfer models to reproduce the measurements. During this period, 2 days were selected to compare model calculations with measurements, one cloud-free and one cloudy. A series of ancillary measurements were also performed and provided parameters required as input to the models. Both measurements and modeling were blind, in the sense that no exchanges of data or calculations were allowed among the participants, and the results were objectively analyzed and compared by two independent referees. The objective of this paper is, first, to present the results of comparisons made between measured and modeled downwelling actinic flux and irradiance spectra and, second, to investigate the reasons for which some of the models or measurements deviate from the others. For clear skies the relative agreement between the 16 models depends strongly on solar zenith angle (SZA) and wavelength as well as on the input parameters used, like the extraterrestrial (ET) solar flux and the absorption cross sections. The majority of the models (11) agreed to within about +/-6% for solar zenith angles smaller than similar to60degrees. The agreement among the measured spectra depends on the optical characteristics of the instruments (e.g., slit function, stray light rejection, and sensitivity). After transforming the measurements to a common spectral resolution, two of the three participating spectroradiometers agree to within similar to10% for wavelengths longer than 310 nm and at all solar zenith angles, while their differences increase when moving to shorter wavelengths. Most models agree well with the measurements (both downwelling actinic flux and global irradiance), especially at local noon, where the agreement is within a few percent. A few models exhibit significant deviations with respect either to wavelength or to solar zenith angle. Models that use the Atmospheric Laboratory for Applications and Science 3 (ATLAS-3) solar flux agree better with the measured spectra, suggesting that ATLAS-3 is probably more appropriate for radiative transfer modeling in the ultraviolet.


Journal of Geophysical Research | 2001

Satellite estimation of spectral surface UV irradiance. 2. Effects of homogeneous clouds and snow

N. Krotkov; Jay R. Herman; Pawan K. Bhartia; Vitali E. Fioletov; Ziauddin Ahmad

This paper extends the theoretical analysis of the estimation of the surface UV irradiance from satellite ozone and reflectivity data from a clear-sky case to a cloudy atmosphere and snow-covered surface. Two methods are compared for the estimation of cloud-transmission factor CT, the ratio of cloudy to clear-sky surface irradiance: (1) the Lambert equivalent reflectivity (LER) method and (2) a method based on radiative transfer calculations for a homogeneous (plane parallel) cloud embedded into a molecular atmosphere with ozone absorption. The satellite-derived CT from the NASA Total Ozone Mapping Spectrometer (TOMS) is compared with ground-based CT estimations from the Canadian network of Brewer spectrometers for the period 1989 -1998. For snow-free conditions the TOMS derived CT at 324 nm approximately agrees with Brewer data with a correlation coefficient of ;0.9 and a standard deviation of ;0.1. The key source of uncertainty is the different size of the TOMS FOV (;100 km field of view) and the much smaller ground instrument FOV. As expected, the standard deviations of weekly and monthly C T averages were smaller than for daily values. The plane-parallel cloud method produces a systematic CT bias relative to the Brewer data (17% at low solar zenith angles to 210% at large solar zenith angles). The TOMS algorithm can properly account for conservatively scattering clouds and snow/ice if the regional snow albedo RS is known from outside data. Since RS varies on a daily basis, using a climatology will result in additional error in the satellite-estimated CT. The CT error has the same sign as the R S error and increases over highly reflecting surfaces. Finally, clouds polluted with absorbing aerosols transmit less radiation to the ground than conservative clouds for the same satellite reflectance and flatten spectral dependence of CT. Both effects reduce C T compared to that estimated assuming conservative cloud scattering. The error increases if polluted clouds are over snow.


Journal of Geophysical Research | 2000

Comparison of daily UV doses estimated from Nimbus 7/TOMS measurements and ground‐based spectroradiometric data

S. Kalliskota; Jussi Kaurola; Petteri Taalas; Jay R. Herman; E. Celarier; N. Krotkov

During recent years, methods have been developed for estimating UV irradiance reaching the Earths surface using satellite-measured backscattered UV radiances. The NASA-developed method is based on radiative transfer calculations and satellite measurements of parameters affecting UV radiation: extraterrestrial solar irradiance, atmospheric ozone, cloud reflectivity, aerosol amounts, and ground albedo. In this work a comparison is made between daily UV erythemal doses estimated from Nimbus-7/TOMS measurements (from 1991 to May 1993) and those calculated from ground-based spectroradiometer data. Three stations operated by the National Science Foundation were chosen for this comparison: Ushuaia, Argentina (for 573 days). Palmer, Antarctica (for 450 days), and San Diego, California, (for 149 days). These stations were selected to illustrate the differences between ground-based measurements using the same type of instrument, SUV-100 double monochromator spectroradiometers. and satellite estimates of surface UV irradiance under three different environmental conditions (mountains and snow, nearly continuous snow cover, and midlatitude urban sea level conditions). Averaging the measured and TOMS-estimated doses over periods from I week to I month improves the agreement. The daily or monthly mean bias increases during months when there is snow/ice on the surface. TOMS has a larger estimate of the UV irradiance by 25% at San Diego (no snow), in agreement with the summer-month analysis of Toronto irradiances [Herman et al., 1999]. TOMS underestimates the average daily-UV dose at Ushuaia (monthly mean bias of -13%) and at Palmer (-35%) consistent with snow/ice with cloud effects not being properly accounted for in the TOMS algorithm. When the reflectivity at all three sites is low (no snow), the TOMS irradiance estimate is larger than the SUV-100 measurements consistent with previously analyzed Brewer data at Toronto. The effects of local fog or clouds smaller than the satellite field of view and undetected UV-absorbing aerosols near the ground are discussed. In addition to uncertainties in radiometric calibrations of the spectrometers, none of the SUV-100 data are corrected for deviations of diffuser-transmittance from true cosine response.


Journal of Geophysical Research | 2004

UV index climatology over the United States and Canada from ground‐based and satellite estimates

Vitali E. Fioletov; Michael G. Kimlin; N. Krotkov; L. J. B. McArthur; James B. Kerr; David I. Wardle; Jay R. Herman; R.S. Meltzer; T. W. Mathews; Jussi Kaurola

[1] Long-term monthly mean UV index values for Canada and the United States were calculated using information from two sources: from noon erythemal UV estimated from Total Ozone Mapping Spectrometer (TOMS) total ozone and reflectivity data and from UV index values derived from observations of global solar radiation, total ozone, dew point, and snow cover. The results are presented as monthly maps of mean noon UV index values. Mean UV index values in summer range from 1.5 in the Arctic to 11.5 over southern Texas. Both climatologies were validated against spectral UV irradiance measurements made by Brewer spectrophotometers. With snow on the ground the TOMSbased data underestimate UV by up to 60% with respect to Brewer measurements and UV derived from global solar radiation and other parameters. In summer, TOMS UV index climatology values are from 10 to 30% higher than those derived from global solar radiation and other parameters. The difference is probably related to aerosol absorption and pollution effects in the lower troposphere that are not currently detected from space. For 21 of 28 midlatitude Brewer sites, long-term mean summer UV measured values and UV derived from global solar radiation and other parameters agree to within +5 to 7%. The remaining seven sites are located in ‘‘clean’’ environments where TOMS estimates agree with Brewer measurements while UV derived from global solar radiation and other parameters is 10–13% lower. Brewer data also demonstrate that clean and ‘‘typical’’ sites can be as little as 70–120 km apart. INDEX TERMS: 0360 Atmospheric Composition and Structure: Transmission and scattering of radiation; 3359 Meteorology and Atmospheric Dynamics: Radiative processes; 0394 Atmospheric Composition and Structure: Instruments and techniques; 3309 Meteorology and Atmospheric Dynamics: Climatology (1620); KEYWORDS: UV index, Brewer, TOMS, pyranometer, climatology, ozone


Journal of Geophysical Research | 1997

Ultraviolet optical model of volcanic clouds for remote sensing of ash and sulfur dioxide

N. Krotkov; Arlin J. Krueger; Pawan K. Bhartia

The total ozone mapping spectrometer (TOMS) instruments have detected every significant volcanic eruption from November 1978 to December 1994 on the Nimbus 7 and Meteor 3 satellites and since July 1996 on the new satellites, TOMS-Earth Probe and ADEOS. We apply a radiative transfer model to simulate the albedos of these fresh eruption clouds to study the limitations of the present algorithm which assumes an absorbing cloud above a scattering atmosphere. The conditions are found to be approximated when the total absorption optical depth is less than 2 (i.e., 100 Dobson units (DU) SO 2 at 312 nm or 300 DU SO 2 at 317 nm). The spectral dependence of the albedo of a nonabsorbing Rayleigh atmosphere can be specified by only two parameters which are uniquely different when ash or sulfate aerosols are present in the stratosphere. However, the interaction between ash scattering and SO 2 absorption within a volcanic cloud produces a nonlinear effect at strongly absorbing wavelengths that accounts for overestimation of sulfur dioxide in ash-laden volcanic clouds by the Krueger et al. [1995] algorithm. Correction of this error requires knowledge of the ash properties. A method for determining two of the ash parameters from the longer TOMS wavelengths is described. Given the altitude of the cloud, surface reflectivity, and an estimate of effective variance of the ash size distribution, the optical thickness and either the effective radius or the index of refraction can be deduced. The ash retrievals are also needed to evaluate the tephra/gas ratio of eruptions and to compare the ash properties of different volcanoes.


Atmospheric Chemistry and Physics | 2010

Comparison of UV irradiances from Aura/Ozone Monitoring Instrument (OMI) with Brewer measurements at El Arenosillo (Spain) – Part 2: Analysis of site aerosol influence

M. Antón; Victoria E. Cachorro; J. M. Vilaplana; C. Toledano; N. Krotkov; Antti Arola; A. Serrano; B. A. de la Morena

Several validation studies have shown a notable overestimation of the clear sky ultraviolet (UV) irradiance at the Earth’s surface derived from satellite sensors such as the Total Ozone Mapping Spectrometer (TOMS) and the Ozone Monitoring Instrument (OMI) with respect to groundbased UV data at many locations. Most of this positive bias is attributed to boundary layer aerosol absorption that is not accounted for in the TOMS/OMI operational UV algorithm. Therefore, the main objective of this study is to analyse the aerosol effect on the bias between OMI erythemal UV irradiance (UVER) and spectral UV (305 nm, 310 nm and 324 nm) surface irradiances and ground-based Brewer spectroradiometer measurements from October 2004 to December 2008 at El Arenosillo station (37.1 ◦ N, 6.7 W, 20 m a.s.l.), with meteorological conditions representative of the South-West of Spain. The effects of other factors as clouds, ozone and the solar elevation over this intercomparison were analysed in detail in a companion paper (Ant ón et al., 2010). In that paper the aerosol effects were studied making only a rough evaluation based on aerosol optical depth (AOD) information at 440 nm wavelength (visible range) without applying any correction. We have used the precise information given by single scattering albedo (SSA) from AERONET for the determination of Correspondence to: V. E. Cachorro ([email protected]) absorbing aerosols which has allowed the correction of the OMI UV data. An aerosol correction expression was applied to the OMI operational UV data using two approaches to estimate the UV absorption aerosol optical depth, AAOD. The first approach was based on an assumption of constant SSA value of 0.91. This approach reduces the OMI UVER bias against the reference Brewer data from 13.4% to 8.4%. Second approach uses daily AERONET SSA values reducing the bias only to 11.6%. Therefore we have obtained a 37% and 12% of improvement respectively. For the spectral irradiance at 324 nm, the OMI bias is reduced from 10.5% to 6.98% for constant SSA and to 9.03% for variable SSA. Similar results were obtained for spectral irradiances at 305 nm, and 310 nm. Contrary to what was expected, the constant SSA approach has a greater bias reduction than variable SSA, but this is a reasonable result according to the discussion about the reliability of SSA values. Our results reflect the level of accuracy that may be reached at the present time in this type of comparison, which may be considered as satisfactory taking into account the remaining dependence on other factors. Nevertheless, improvements must be accomplished to determine reliable absorbing aerosol properties, which appear as a limiting factor for improving OMI retrievals. Published by Copernicus Publications on behalf of the European Geosciences Union. 11868 V. E. Cachorro et al.: Part 2: Analysis of site aerosol influence


Journal of Geophysical Research | 2011

In situ measurements of tropospheric volcanic plumes in Ecuador and Colombia during TC4

Simon A. Carn; Karl D. Froyd; Bruce E. Anderson; Paul O. Wennberg; John D. Crounse; K. M. Spencer; Jack E. Dibb; N. Krotkov; Edward V. Browell; J. W. Hair; Glenn S. Diskin; G. W. Sachse; S. A. Vay

A NASA DC-8 research aircraft penetrated tropospheric gas and aerosol plumes sourced from active volcanoes in Ecuador and Colombia during the Tropical Composition, Cloud and Climate Coupling (TC^4) mission in July–August 2007. The likely source volcanoes were Tungurahua (Ecuador) and Nevado del Huila (Colombia). The TC^4 data provide rare insight into the chemistry of volcanic plumes in the tropical troposphere and permit a comparison of SO_2 column amounts measured by the Ozone Monitoring Instrument (OMI) on the Aura satellite with in situ SO_2 measurements. Elevated concentrations of SO_2, sulfate aerosol, and particles were measured by DC-8 instrumentation in volcanic outflow at altitudes of 3–6 km. Estimated plume ages range from ~2 h at Huila to ~22–48 h downwind of Ecuador. The plumes contained sulfate-rich accumulation mode particles that were variably neutralized and often highly acidic. A significant fraction of supermicron volcanic ash was evident in one plume. In-plume O_3 concentrations were ~70%–80% of ambient levels downwind of Ecuador, but data are insufficient to ascribe this to O_3 depletion via reactive halogen chemistry. The TC^4 data record rapid cloud processing of the Huila volcanic plume involving aqueous-phase oxidation of SO_2 by H_2O_2, but overall the data suggest average in-plume SO_2 to sulfate conversion rates of ~1%–2% h^(−1). SO_2 column amounts measured in the Tungurahua plume (~0.1–0.2 Dobson units) are commensurate with average SO_2 columns retrieved from OMI measurements in the volcanic outflow region in July 2007. The TC^4 data set provides further evidence of the impact of volcanic emissions on tropospheric acidity and oxidizing capacity.


Proceedings of SPIE | 2005

Long-term UV irradiance changes over Moscow and comparisons with UV estimates from TOMS and METEOSAT

Natalia Ye. Chubarova; Yelena Nezval; Jean Verdebout; N. Krotkov; Jay R. Herman

We analyzed long-term variations of UV irradiance 300-380 nm over Moscow 55.7N, 37.5E since 1968 using a complex dataset that includes ground-based UV measurements, UV retrievals from two satellites, and the results of a previously developed empirical model. Long-term interannual changes of UV irradiance, 300-380nm, during 1968-2003 show the absence of any linear trends although an increase is detected in the late 90-s due to cloud amount and aerosol content decrease. The ground-based data are compared with UV satellite retrievals from two independent methods as well as with the results of an empirical model that accounts for the physical dependence of UV on cloud parameters (amount and optical thickness), surface albedo, total ozone, and aerosol properties of the atmosphere. UV datasets over Moscow obtained from different satellite instruments: from the Total Ozone Mapping Spectrometer (TOMS) data (version 8) since 1979 and from METEOSAT/MVIRI since 1984. The original METEOSAT processor, using visibility observations at a nearby meteorological station to quantify the aerosol load, leads to a significant underestimation of the UV daily doses (-23% in warm period and -31% in cold period). Substituting the visibility observations by in situ monthly mean aerosol optical depth improves significantly the agreement in both warm and cold periods (respectively, -9% and -10%) but the bias still remains. The difference between TOMS UV retrievals and ground-based data has different signs in warm (+6%) and cold (-15%) periods. Applying off-line absorbing aerosol correction in TOMS UV retrievals eliminates the positive bias in warm period. The negative bias during the cold period can be due to the application of minimum Lambertian effective reflectivity (MLER) approach to determine the surface albedo especially in conditions with non stable snow cover (end of February- March, and November-December). Model reconstruction of UV variability demonstrates high correlation with aerosol corrected satellite UV retrievals (0.83-0.94) as well as with ground data (0.82) during warm period. During cold months the correlation between satellite UV retrievals and ground-based measurements is much worse.

Collaboration


Dive into the N. Krotkov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antti Arola

Finnish Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

A. F. Bais

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Pieternel F. Levelt

Royal Netherlands Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jussi Kaurola

Finnish Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

K. F. Boersma

Royal Netherlands Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

Simon A. Carn

Michigan Technological University

View shared research outputs
Top Co-Authors

Avatar

James B. Kerr

Meteorological Service of Canada

View shared research outputs
Researchain Logo
Decentralizing Knowledge