Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where N. L. Harrington is active.

Publication


Featured researches published by N. L. Harrington.


Proceedings of SPIE | 2014

SPT-3G: a next-generation cosmic microwave background polarization experiment on the South Pole telescope

B. A. Benson; Peter A. R. Ade; Z. Ahmed; S. W. Allen; K. Arnold; J. E. Austermann; A. N. Bender; L. E. Bleem; J. E. Carlstrom; C. L. Chang; H. M. Cho; Jean-François Cliche; T. M. Crawford; A. Cukierman; T. de Haan; M. Dobbs; D. Dutcher; W. Everett; A. Gilbert; N. W. Halverson; D. Hanson; N. L. Harrington; K. Hattori; J. W. Henning; G. C. Hilton; Gilbert P. Holder; W. L. Holzapfel; K. D. Irwin; R. Keisler; L. Knox

We describe the design of a new polarization sensitive receiver, spt-3g, for the 10-meter South Pole Telescope (spt). The spt-3g receiver will deliver a factor of ~20 improvement in mapping speed over the current receiver, spt-pol. The sensitivity of the spt-3g receiver will enable the advance from statistical detection of B-mode polarization anisotropy power to high signal-to-noise measurements of the individual modes, i.e., maps. This will lead to precise (~0.06 eV) constraints on the sum of neutrino masses with the potential to directly address the neutrino mass hierarchy. It will allow a separation of the lensing and inflationary B-mode power spectra, improving constraints on the amplitude and shape of the primordial signal, either through spt-3g data alone or in combination with bicep2/keck, which is observing the same area of sky. The measurement of small-scale temperature anisotropy will provide new constraints on the epoch of reionization. Additional science from the spt-3g survey will be significantly enhanced by the synergy with the ongoing optical Dark Energy Survey (des), including: a 1% constraint on the bias of optical tracers of large-scale structure, a measurement of the differential Doppler signal from pairs of galaxy clusters that will test General Relativity on ~200Mpc scales, and improved cosmological constraints from the abundance of clusters of galaxies


Nature | 2012

A massive, cooling-flow-induced starburst in the core of a luminous cluster of galaxies

M. McDonald; Matthew B. Bayliss; B. A. Benson; Ryan J. Foley; J. Ruel; Peter W. Sullivan; Sylvain Veilleux; K. A. Aird; M. L. N. Ashby; Marshall W. Bautz; G. Bazin; L. E. Bleem; M. Brodwin; J. E. Carlstrom; C. L. Chang; H. M. Cho; Alejandro Clocchiatti; T. M. Crawford; A. T. Crites; T. de Haan; S. Desai; M. Dobbs; J. P. Dudley; E. Egami; W. Forman; Gordon Garmire; E. M. George; Michael D. Gladders; Anthony H. Gonzalez; N. W. Halverson

In the cores of some clusters of galaxies the hot intracluster plasma is dense enough that it should cool radiatively in the cluster’s lifetime, leading to continuous ‘cooling flows’ of gas sinking towards the cluster centre, yet no such cooling flow has been observed. The low observed star-formation rates and cool gas masses for these ‘cool-core’ clusters suggest that much of the cooling must be offset by feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical and infrared observations of the galaxy cluster SPT-CLJ2344-4243 (ref. 11) at redshift z = 0.596. These observations reveal an exceptionally luminous (8.2 × 1045 erg s−1) galaxy cluster that hosts an extremely strong cooling flow (around 3,820 solar masses a year). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (formation of around 740 solar masses a year), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool-core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star-formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form through accretion of the intracluster medium, rather than (as is currently thought) assembling entirely via mergers.


Proceedings of SPIE | 2012

SPTpol: an instrument for CMB polarization measurements with the South Pole Telescope

J. E. Austermann; K. A. Aird; James A. Beall; D. Becker; A. N. Bender; B. A. Benson; L. E. Bleem; J. Britton; J. E. Carlstrom; C. L. Chang; H. C. Chiang; H. M. Cho; T. M. Crawford; A. T. Crites; A. Datesman; T. de Haan; M. Dobbs; E. M. George; N. W. Halverson; N. L. Harrington; J. W. Henning; G. C. Hilton; G. P. Holder; W. L. Holzapfel; S. Hoover; N. Huang; J. Hubmayr; K. D. Irwin; R. Keisler; J. Kennedy

SPTpol is a dual-frequency polarization-sensitive camera that was deployed on the 10-meter South Pole Telescope in January 2012. SPTpol will measure the polarization anisotropy of the cosmic microwave background (CMB) on angular scales spanning an arcminute to several degrees. The polarization sensitivity of SPTpol will enable a detection of the CMB “B-mode” polarization from the detection of the gravitational lensing of the CMB by large scale structure, and a detection or improved upper limit on a primordial signal due to inationary gravity waves. The two measurements can be used to constrain the sum of the neutrino masses and the energy scale of ination. These science goals can be achieved through the polarization sensitivity of the SPTpol camera and careful control of systematics. The SPTpol camera consists of 768 pixels, each containing two transition-edge sensor (TES) bolometers coupled to orthogonal polarizations, and a total of 1536 bolometers. The pixels are sensitive to light in one of two frequency bands centered at 90 and 150 GHz, with 180 pixels at 90 GHz and 588 pixels at 150 GHz. The SPTpol design has several features designed to control polarization systematics, including: singlemoded feedhorns with low cross-polarization, bolometer pairs well-matched to dfference atmospheric signals, an improved ground shield design based on far-sidelobe measurements of the SPT, and a small beam to reduce temperature to polarization leakage. We present an overview of the SPTpol instrument design, project status, and science projections.


The Astrophysical Journal | 2012

A MEASUREMENT OF THE CORRELATION OF GALAXY SURVEYS WITH CMB LENSING CONVERGENCE MAPS FROM THE SOUTH POLE TELESCOPE

L. E. Bleem; A. van Engelen; G. P. Holder; K. A. Aird; R. Armstrong; M. L. N. Ashby; M. R. Becker; B. A. Benson; T. Biesiadzinski; M. Brodwin; Michael T. Busha; J. E. Carlstrom; C. L. Chang; H. M. Cho; T. M. Crawford; A. T. Crites; T. de Haan; S. Desai; M. Dobbs; O. Doré; J. P. Dudley; J. E. Geach; E. M. George; Michael D. Gladders; Anthony H. Gonzalez; N. W. Halverson; N. L. Harrington; F. W. High; B. Holden; W. L. Holzapfel

We compare cosmic microwave background lensing convergence maps derived from South Pole Telescope (SPT) data with galaxy survey data from the Blanco Cosmology Survey, WISE, and a new large Spitzer/IRAC field designed to overlap with the SPT survey. Using optical and infrared catalogs covering between 17 and 68 deg2 of sky, we detect a correlation between the SPT convergence maps and each of the galaxy density maps at >4σ, with zero correlation robustly ruled out in all cases. The amplitude and shape of the cross-power spectra are in good agreement with theoretical expectations and the measured galaxy bias is consistent with previous work. The detections reported here utilize a small fraction of the full 2500 deg2 SPT survey data and serve as both a proof of principle of the technique and an illustration of the potential of this emerging cosmological probe.


The Astrophysical Journal | 2015

A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND GRAVITATIONAL LENSING POTENTIAL FROM 100 SQUARE DEGREES OF SPTPOL DATA

K. Story; D. Hanson; Peter A. R. Ade; K. A. Aird; J. E. Austermann; James A. Beall; A. N. Bender; B. A. Benson; L. E. Bleem; J. E. Carlstrom; C. L. Chang; H. C. Chiang; H. M. Cho; R. Citron; T. M. Crawford; A. T. Crites; T. de Haan; M. Dobbs; W. Everett; J. Gallicchio; Jiansong Gao; E. M. George; A. Gilbert; N. W. Halverson; N. L. Harrington; J. W. Henning; G. C. Hilton; Gilbert P. Holder; W. L. Holzapfel; S. Hoover

We present a measurement of the cosmic microwave background (CMB) gravitational lensing potential using data from the first two seasons of observations with SPTpol, the polarization-sensitive receiver currently installed on the South Pole Telescope. The observations used in this work cover 100 deg^2 of sky with arcminute resolution at 150 GHz. Using a quadratic estimator, we make maps of the CMB lensing potential from combinations of CMB temperature and polarization maps. We combine these lensing potential maps to form a minimum-variance (MV) map. The lensing potential is measured with a signal-to-noise ratio of greater than one for angular multipoles between 100 < L < 250. This is the highest signal-to-noise mass map made from the CMB to date and will be powerful in cross-correlation with other tracers of large-scale structure. We calculate the power spectrum of the lensing potential for each estimator, and we report the value of the MV power spectrum between 100 < L < 2000 as our primary result. We constrain the ratio of the spectrum to a fiducial ΛCDM model to be A_(MV) = 0.92 ± 0.14 (Stat.) ± 0.08 (Sys.). Restricting ourselves to polarized data only, we find A_(POL) = 0.92 ± 0.24 (Stat.) ± 0.11 (Sys.). This measurement rejects the hypothesis of no lensing at 5.9σ using polarization data alone, and at 14σ using both temperature and polarization data.


The Astrophysical Journal | 2015

Measurements of E-mode polarization and temperature-E-mode correlation in the cosmic microwave background from 100 square degrees of SPTPOL data

A. T. Crites; J. W. Henning; Peter A. R. Ade; K. A. Aird; J. E. Austermann; James A. Beall; A. N. Bender; B. A. Benson; L. E. Bleem; J. E. Carlstrom; C. L. Chang; H. C. Chiang; H. M. Cho; R. Citron; T. M. Crawford; T. de Haan; M. Dobbs; W. Everett; J. Gallicchio; Jiansong Gao; E. M. George; A. Gilbert; N. W. Halverson; D. Hanson; N. L. Harrington; G. C. Hilton; Gilbert P. Holder; W. L. Holzapfel; S. Hoover; Z. Hou

We present measurements of E-mode polarization and temperature-E-mode correlation in the cosmic microwave background using data from the first season of observations with SPTpol, the polarization-sensitive receiver currently installed on the South Pole Telescope (SPT). The observations used in this work cover 100 deg^2 of sky with arcminute resolution at 150 GHz. We report the E-mode angular auto-power spectrum (EE) and the temperature-E-mode angular cross-power spectrum (TE) over the multipole range 500 < l ≤ 5000. These power spectra improve on previous measurements in the high-l (small-scale) regime. We fit the combination of the SPTpol power spectra, data from Planck, and previous SPT measurements with a six-parameter ΛCDM cosmological model. We find that the best-fit parameters are consistent with previous results. The improvement in high-l sensitivity over previous measurements leads to a significant improvement in the limit on polarized point-source power: after masking sources brighter than 50 mJy in unpolarized flux at 150 GHz, we find a 95% confidence upper limit on unclustered point-source power in the EE spectrum of D_l = l(l + 1) C_l/2π < 0.40 µK^2 at l = 3000, indicating that future EE measurements will not be limited by power from unclustered point sources in the multipole range l < 3600, and possibly much higher in l.


The Astrophysical Journal | 2015

A MEASUREMENT OF GRAVITATIONAL LENSING OF THE COSMIC MICROWAVE BACKGROUND BY GALAXY CLUSTERS USING DATA FROM THE SOUTH POLE TELESCOPE

E. Baxter; R. Keisler; Scott Dodelson; K. A. Aird; S. W. Allen; M. L. N. Ashby; Marshall W. Bautz; Matthew B. Bayliss; B. A. Benson; L. E. Bleem; S. Bocquet; M. Brodwin; J. E. Carlstrom; C. L. Chang; I. Chiu; H. M. Cho; Alejandro Clocchiatti; T. M. Crawford; A. T. Crites; S. Desai; J. P. Dietrich; T. de Haan; M. Dobbs; Ryan J. Foley; W. Forman; E. M. George; Michael D. Gladders; Anthony H. Gonzalez; N. W. Halverson; N. L. Harrington

Clusters of galaxies are expected to gravitationally lens the cosmic microwave background (CMB) and thereby generate a distinct signal in the CMB on arcminute scales. Measurements of this effect can be used to constrain the masses of galaxy clusters with CMB data alone. Here we present a measurement of lensing of the CMB by galaxy clusters using data from the South Pole Telescope (SPT). We develop a maximum likelihood approach to extract the CMB cluster lensing signal and validate the method on mock data. We quantify the effects on our analysis of several potential sources of systematic error and find that they generally act to reduce the best-fit cluster mass. It is estimated that this bias to lower cluster mass is roughly 0.85σ in units of the statistical error bar, although this estimate should be viewed as an upper limit. We apply our maximum likelihood technique to 513 clusters selected via their Sunyaev–Zeldovich (SZ) signatures in SPT data, and rule out the null hypothesis of no lensing at 3.1σ. The lensing-derived mass estimate for the full cluster sample is consistent with that inferred from the SZ flux: M_(200,lens)=0.83_(-0.37)^(+0.38)M_(200,SZ) (68% C.L., statistical error only).


Superconductor Science and Technology | 2015

Fabrication of large dual-polarized multichroic TES bolometer arrays for CMB measurements with the SPT-3G camera

C. M. Posada; Peter A. R. Ade; Z. Ahmed; K. Arnold; J. E. Austermann; A. N. Bender; L. E. Bleem; B. A. Benson; K. L. Byrum; J. E. Carlstrom; C. L. Chang; H. M. Cho; S. T. Ciocys; Jean-François Cliche; T. M. Crawford; A. Cukierman; David A. Czaplewski; Junjia Ding; Ralu Divan; T. de Haan; M. Dobbs; D. Dutcher; W. Everett; A. Gilbert; N. W. Halverson; N. L. Harrington; K. Hattori; J. W. Henning; G. C. Hilton; W. L. Holzapfel

This work presents the procedures used at Argonne National Laboratory to fabricate large arrays of multichroic transition-edge sensor (TES) bolometers for cosmic microwave background (CMB) measurements. These detectors will be assembled into the focal plane for the SPT-3G camera, the third generation CMB camera to be installed in the South Pole Telescope. The complete SPT-3G camera will have approximately 2690 pixels, for a total of 16 140 TES bolometric detectors. Each pixel is comprised of a broad-band sinuous antenna coupled to a Nb microstrip line. In-line filters are used to define the different bands before the millimeter-wavelength signal is fed to the respective Ti/Au TES bolometers. There are six TES bolometer detectors per pixel, which allow for measurements of three band-passes (95, 150 and 220 GHz) and two polarizations. The steps involved in the monolithic fabrication of these detector arrays are presented here in detail. Patterns are defined using a combination of stepper and contact lithography. The misalignment between layers is kept below 200 nm. The overall fabrication involves a total of 16 processes, including reactive and magnetron sputtering, reactive ion etching, inductively coupled plasma etching and chemical etching.


The Astrophysical Journal | 2017

A comparison of cosmological parameters determined from CMB Temperature Power Spectra from the South Pole Telescope and the Planck Satellite

K. Aylor; Z. Hou; L. Knox; K. T. Story; B. A. Benson; L. E. Bleem; J. E. Carlstrom; C. L. Chang; H. M. Cho; R. Chown; T. M. Crawford; A. T. Crites; T. de Haan; M. Dobbs; W. Everett; E. M. George; N. W. Halverson; N. L. Harrington; Gilbert P. Holder; W. L. Holzapfel; J. D. Hrubes; R. Keisler; A. T. Lee; E. M. Leitch; D. Luong-Van; D. P. Marrone; J. J. McMahon; S. S. Meyer; M. Millea; L. Mocanu

U.S. Department of Energy [DE-AC02-06CH11357]; Canadian Institute for Advanced Research; U.S. Department of Energy, Office of Science, Office of High Energy Physics; National Science Foundation [PLR-1248097]; Kavli Foundation; NSF Physics Frontier Center [PHY-1125897]; Australian Research Council Future Fellowship [FT150100074]; Fermi Research Alliance, LLC [DE-AC02-07CH11359]; National Sciences and Engineering Research Council of Canada; Gordon and Betty Moore Foundation grant [GBMF 947]; Canada Research Chairs program


The Astrophysical Journal | 2018

Measurements of the Temperature and E-mode Polarization of the CMB from 500 Square Degrees of SPTpol Data

J. W. Henning; J. T. Sayre; C. L. Reichardt; Peter A. R. Ade; A. J. Anderson; J. E. Austermann; James A. Beall; A. N. Bender; B. A. Benson; L. E. Bleem; J. E. Carlstrom; C. L. Chang; H. C. Chiang; H. M. Cho; R. Citron; C. Corbett Moran; T. M. Crawford; A. T. Crites; T. de Haan; M. Dobbs; Wendeline Everett; J. Gallicchio; E. M. George; A. Gilbert; N. W. Halverson; N. L. Harrington; G. C. Hilton; Gilbert P. Holder; W. L. Holzapfel; S. Hoover

We present measurements of the

Collaboration


Dive into the N. L. Harrington's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. W. Halverson

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. de Haan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. M. Cho

SLAC National Accelerator Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge