N. Lal
Goddard Space Flight Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N. Lal.
Nature | 2008
E. C. Stone; A. C. Cummings; F. B. McDonald; Bryant C. Heikkila; N. Lal; W. R. Webber
Voyager 2 crossed the solar wind termination shock at 83.7u2009au in the southern hemisphere, ∼10u2009au closer to the Sun than found by Voyager 1 in the north. This asymmetry could indicate an asymmetric pressure from an interstellar magnetic field, from transient-induced shock motion, or from the solar wind dynamic pressure. Here we report that the intensity of 4–5u2009MeV protons accelerated by the shock near Voyager 2 was three times that observed concurrently by Voyager 1, indicating differences in the shock at the two locations. (Companion papers report on the plasma, magnetic field, plasma-wave and lower energy particle observations at the shock.) Voyager 2 did not find the source of anomalous cosmic rays at the shock, suggesting that the source is elsewhere on the shock or in the heliosheath. The small intensity gradient of Galactic cosmic ray helium indicates that either the gradient is further out in the heliosheath or the local interstellar Galactic cosmic ray intensity is lower than expected.
Science | 2013
E. C. Stone; A. C. Cummings; F. B. McDonald; Bryant C. Heikkila; N. Lal; W. R. Webber
Unexpected Magnetic Highway The heliopause is thought to separate the heliosphere (the bubble of plasma and magnetic field originating at the Sun) from interstellar plasma and magnetic field. In August last year, the Voyager 1 spacecraft, which was launched 35 years ago, was 18.5 billion kilometers away from the Sun, close to the expected location of the heliopause. Krimigis et al. (p. 144, published online 27 June) report observations of energetic ions and electrons by Voyager 1 that suggest that a sharp and distinct boundary was crossed five times over ∼30 days. Burlaga et al. (p. 147, published online 27 June) found that the magnetic field direction did not change across any of the boundary crossings, indicating that Voyager 1 had not crossed the heliopause but had entered a region in the heliosphere that serves as a magnetic highway along which low-energy ions from inside stream away and galactic cosmic rays flow in from interstellar space. Stone et al. (p. 150, published online 27 June) report the spectra of low-energy galactic cosmic rays in this unexpected region. The Voyager 1 spacecraft entered an unexpected region of the heliosphere at the boundary with interstellar space. On 25 August 2012, Voyager 1 was at 122 astronomical units when the steady intensity of low-energy ions it had observed for the previous 6 years suddenly dropped for a third time and soon completely disappeared as the ions streamed away into interstellar space. Although the magnetic field observations indicate that Voyager 1 remained inside the heliosphere, the intensity of cosmic ray nuclei from outside the heliosphere abruptly increased. We report the spectra of galactic cosmic rays down to ~3 × 106 electron volts per nucleon, revealing H and He energy spectra with broad peaks from 10 × 106 to 40 × 106 electron volts per nucleon and an increasing galactic cosmic-ray electron intensity down to ~10 × 106 electron volts.
Nature | 2003
F. B. McDonald; E. C. Stone; A. C. Cummings; Bryant C. Heikkila; N. Lal; W. R. Webber
The spacecraft Voyager 1 is at a distance greater than 85u2009au from the Sun, in the vicinity of the termination shock that marks the abrupt slowing of the supersonic solar wind and the beginning of the extended and unexplored distant heliosphere. This shock is expected to accelerate ‘anomalous cosmic rays’, as well as to re-accelerate Galactic cosmic rays and low-energy particles from the inner Solar System. Here we report a significant increase in the numbers of energetic ions and electrons that persisted for seven months beginning in mid-2002. This increase differs from any previously observed in that there was a simultaneous increase in Galactic cosmic ray ions and electrons, anomalous cosmic rays and low-energy ions. The low-intensity level and spectral energy distribution of the anomalous cosmic rays, however, indicates that Voyager 1 still has not reached the termination shock. Rather, the observed increase is an expected precursor event. We argue that the radial anisotropy of the cosmic rays is expected to be small in the foreshock region, as is observed.
Science | 1981
R. E. Vogt; D. L. Chenette; A. C. Cummings; T. L. Garrard; E. C. Stone; A. W. Schardt; J. H. Trainor; N. Lal; F. B. McDonald
Results from the cosmic-ray system on Voyager 2 in Saturns magnetosphere are presented. During the inbound pass through the outer magnetosphere, the ≥ 0.43-million-electron-volt proton flux was more intense, and both the proton and electron fluxes were more variable, than previously observed. These changes are attributed to the influence on the magnetosphere of variations in the solar wind conditions. Outbound, beyond 18 Saturn radii, impulsive bursts of 0.14- to > 1.0- million-electron-volt electrons were observed. In the inner magnetosphere, the charged particle absorption signatures of Mimas, Enceladus, and Tethys are used to constrain the possible tilt and offset of Saturns internal magnetic dipole. At ∼ 3 Saturn radii, a transient decrease was observed in the electron flux which was not due to Mimas. Characteristics of this decrease suggest the existence of additional material, perhaps another satellite, in the orbit of Mimas.
Journal of Geophysical Research | 2000
F. B. McDonald; Bryant C. Heikkila; N. Lal; E. C. Stone
At Voyager 1 (46 AU, 33°N) the recovery of anomalous cosmic rays (ACR) is found to be very different from that of galactic cosmic rays (GCR) following the passage of the large interplanetary disturbances produced by the intensive solar activity of March/June 1991. If the modulation boundary for the GCR were at the termination shock, where anomalous cosmic rays are believed to originate, it would be expected that the intensity of the higher-energy galactic cosmic rays would recover more rapidly than the relatively low energy anomalous component. On the contrary, we find that the time constant for the recovery of 265 MeV/nucleon GCR He is approximately twice as large as that of 43 MeV/nucleon ACR He^+ and 13 MeV/nucleon O^+. A regression plot of the ACR versus GCR intensity indicates a broad plateau in the ACR intensity over a period of several years while the GCR continues to increase. These differences in the relative recovery of the ACR and GCR strongly suggest that the combined interplanetary disturbances in the form of a global merged interaction region (GMIR) produced by the March/June 1991 solar activity remain an effective modulation agent for GCR after passing beyond the termination shock and into the region of the heliosheath. Some 0.37 years after the passage of the leading portion of the GMIR by Voyager 1, there is a large anisotropy in the ACR He^+. One possible interpretation of this anisotropy is that it is produced by the initial flow of the ACR back into the heliosphere at the time that the leading portion of the interplanetary disturbance moves beyond the termination shock. If this interpretation is correct, then the inferred transit time between Voyager 1 and the termination shock of the GMIR along with an estimate of its velocity at 40 AU based on similar features in the Voyager 1 and Pioneer 11 energetic particle data give a value of the heliocentric distance to the termination shock of 88.5 ± 7 AU at ∼33°N in early 1992.
Science | 1986
E. C. Stone; J. F. Cooper; A. C. Cummings; F. B. McDonald; J. H. Trainor; N. Lal; R. E. McGuire; D. L. Chenette
During the encounter with Uranus, the cosmic ray system on Voyager 2 measured significant fluxes of energetic electrons and protons in the regions of the planets magnetosphere where these particles could be stably trapped. The radial distribution of electrons with energies of megaelectron volts is strongly modulated by the sweeping effects ofthe three major inner satellites Miranda, Ariel, and Umbriel. The phase space density gradient of these electrons indicates that they are diffusing radially inward from a source in the outer magnetosphere or magnetotail. Differences in the energy spectra of protons having energies of approximately 1 to 8 megaelectron volts from two different directions indicate a strong dependence on pitch angle. From the locations of the absorption signatures observed in the electron flux, a centered dipole model for the magnetic field of Uranus with a tilt of 60.1 degrees has been derived, and a rotation period of the planet of 17.4 hours has also been calculated. This model provides independent confirmaton of more precise determinations made by other Voyager experiments.
The Astrophysical Journal | 2016
A. C. Cummings; E. C. Stone; Bryant C. Heikkila; N. Lal; W. R. Webber; G. Jóhannesson; I. V. Moskalenko; Elena Orlando; T. A. Porter
Since 2012 August Voyager 1 has been observing the local interstellar energy spectra of Galactic cosmic-ray nuclei down to 3 MeV nuc^(−1) and electrons down to 2.7 MeV. The H and He spectra have the same energy dependence between 3 and 346 MeV nuc^(−1), with a broad maximum in the 10–50 MeV nuc^(−1) range and a H/He ratio of 12.2 ± 0.9. The peak H intensity is ~15 times that observed at 1 AU, and the observed local interstellar gradient of 3–346 MeV H is −0.009 ± 0.055% AU^(−1), consistent with models having no local interstellar gradient. The energy spectrum of electrons (e^− + e^+) with 2.7–74 MeV is consistent with E^(−1.30±0.05) and exceeds the H intensity at energies below ~50 MeV. Propagation model fits to the observed spectra indicate that the energy density of cosmic-ray nuclei with >3 MeV nuc^(−1) and electrons with >3 MeV is 0.83–1.02 eV cm−3 and the ionization rate of atomic H is in the range of 1.51–1.64 × 10^(−17) s^(−1). This rate is a factor >10 lower than the ionization rate in diffuse interstellar clouds, suggesting significant spatial inhomogeneity in low-energy cosmic rays or the presence of a suprathermal tail on the energy spectrum at much lower energies. The propagation model fits also provide improved estimates of the elemental abundances in the source of Galactic cosmic rays.
Science | 1989
E. C. Stone; A. C. Cummings; Mark Dixon Looper; R. S. Selesnick; N. Lal; F. B. McDonald; J. H. Trainor; D. L. Chenette
The Voyager 2 cosmic ray system (CRS) measured significant fluxes of energetic [≥1 megaelectron volt (MeV)] trapped electrons and protons in the magnetosphere of Neptune. The intensities are maximum near a magnetic L shell of 7, decreasing closer to the planet because of absorption by satellites and rings. In the region of the inner satellites of Neptune, the radiation belts have a complicated structure, which provides some constraints on the magnetic field geometry of the inner magnetosphere. Electron phase-space densities have a positive radial gradient, indicating that they diffuse inward from a source in the outer magnetosphere. Electron spectra from 1 to 5 MeV are generally well represented by power laws with indices near 6, which harden in the region of peak flux to power law indices of 4 to 5. Protons have significantly lower fluxes than electrons throughout the magnetosphere, with large anisotropies due to radial intensity gradients. The radiation belts resemble those of Uranus to the extent allowed by the different locations of the satellites, which limit the flux at each planet.
The Astrophysical Journal | 1994
E. S. Seo; F. B. McDonald; N. Lal; W. R. Webber
We have measured the spectra of H and He isotopes during the 1987 solar minimum with the cosmic-ray detector system (CRS) on the Voyager 2 spacecraft. By carrying out the measurement near solar minimum and at large heliospheric distances, the effects of solar modulations were reduced. In particular, the adiabatic energy losses were smaller, and these results from 23 AU over the solar minimum period of cycle 21 represent observations at energies not accessible from previous measurements near 1 AU. The modulated spectra with the diffusion coefficient constant k(sub 0) = 3.15 x 10(exp 22) sq cm/s (which corresponds to a solar modulation parameter of 360 MV at 23 AU and 500 MV at 1 AU) agree well with both our data at 23 AU and the previous solar minimum measurements at 1 AU. The measured H-1 and H-2 spectra are both consistent with the calculated spectra, using standard Galactic and heliospheric propagation models without invoking an anomalous hydrogen component. With the fixed modulation parameter of 360 MV, the mean pathlengths, source spectra, and cross sections were varied to study the effects of different input parameters on the spectra and relative abundances. At this stage of our work, we have not found any strong evidence from the low-energy H-2 and He-3 data that H-1 and He-4 should have a different propagation history, or different types of source spectra from the heavier cosmic-ray nuclei.
Journal of Geophysical Research | 2008
W. R. Webber; A. C. Cummings; F. B. McDonald; E. C. Stone; Bryant C. Heikkila; N. Lal
Using data from the Voyager 1 and 2 spacecraft, we have followed the intensity variations of H, He and C + O nuclei between 1998 and 2008 and determined the spectra for H and He at the time of minimum modulation in 1998, when the solar magnetic polarity was positive and again in 2008 when the solar magnetic polarity was negative. At these times these data are representative of conditions near a heliospheric termination shock assumed to be located at ∼90 AU. Above ∼400 MeV/nuc for He nuclei the 11-year solar modulation cycle observed at the Earth is not seen; instead there is a 22-year variation. The negative polarity cycle intensities above ∼150 MeV/nuc are higher than those in the positive polarity cycle by a factor of 1.4–1.7 times for both H and He nuclei. Below ∼100 MeV/nuc the C nuclei intensities are similar in the two cycles to within ±10%. These observations are compared with theoretical calculations which also show a negative to positive polarity cycle intensity difference at higher energies, most likely associated with energy changes due to drifts near the termination shock, but the comparison suggests that improved estimates of the local interstellar spectra are required.