N. Lastzka
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N. Lastzka.
Physical Review Letters | 2008
H. Vahlbruch; M. Mehmet; N. Lastzka; B. Hage; S. Chelkowski; A. Franzen; S. Gossler; Karsten Danzmann; Roman Schnabel
Squeezing of lights quantum noise requires temporal rearranging of photons. This again corresponds to creation of quantum correlations between individual photons. Squeezed light is a nonclassical manifestation of light with great potential in high-precision quantum measurements, for example, in the detection of gravitational waves [C. M. Caves, Phys. Rev. D 23, 1693 (1981)10.1103/PhysRevD.23.1693]. Equally promising applications have been proposed in quantum communication [H. P. Yuen and J. H. Shapiro, IEEE Trans. Inf. Theory 24, 657 (1978)10.1109/TIT.1978.1055958]. However, after 20 years of intensive research doubts arose whether strong squeezing can ever be realized as required for eminent applications. Here we show experimentally that strong squeezing of lights quantum noise is possible. We reached a benchmark squeezing factor of 10 in power (10 dB). Thorough analysis reveals that even higher squeezing factors will be feasible in our setup.
Physical Review A | 2010
M. Mehmet; H. Vahlbruch; N. Lastzka; Karsten Danzmann; Roman Schnabel
Squeezed states of light constitute an important nonclassical resource in the field of high-precision measurements, for example, gravitational wave detection, as well as in the field of quantum information, for example, for teleportation, quantum cryptography, and distribution of entanglement in quantum computation networks. Strong squeezing in combination with high purity, high bandwidth, and high spatial mode quality is desirable in order to achieve significantly improved performances contrasting any classical protocols. Here we report on the observation of 11.5 dB of squeezing, together with relatively high state purity corresponding to a vacuum contribution of less than 5%, and a squeezing bandwidth of about 170 MHz. The analysis of our squeezed states reveals a significant production of higher-order pairs of quantum-correlated photons and the existence of strong photon-number oscillations.
Classical and Quantum Gravity | 2010
H. Vahlbruch; A. Khalaidovski; N. Lastzka; Christian Gräf; Karsten Danzmann; Roman Schnabel
The next upgrade of the GEO 600 gravitational-wave detector is scheduled for 2010 and will, in particular, involve the implementation of squeezed light. The required non-classical light source is assembled on a 1.5 m 2 breadboard and includes a full coherent control system and a diagnostic balanced homodyne detector. Here, we present the first experimental characterization of this setup as well as a detailed description of its optical layout. A squeezed quantum noise of up to 9 dB below the shot-noise level was observed in the detection band between 10 Hz and 10 kHz. We also present an analysis of the optical loss in our experiment and provide an estimation of the possible non-classical sensitivity improvement of the future squeezed light enhanced GEO 600 detector.
Physical Review A | 2005
S. Chelkowski; H. Vahlbruch; B. Hage; A. Franzen; N. Lastzka; Karsten Danzmann; Roman Schnabel
We report on the demonstration of broadband squeezed laser beams that show a frequency-dependent orientation of the squeezing ellipse. Carrier frequency as well as quadrature angle were stably locked to a reference laser beam at 1064 nm. This frequency-dependent squeezing was characterized in terms of noise power spectra and contour plots of Wigner functions. The latter were measured by quantum state tomography. Our tomograph allowed a stable lock to a local oscillator beam for arbitrary quadrature angles with ±1° precision. Frequency-dependent orientations of the squeezing ellipse are necessary for squeezed states of light to provide a broadband sensitivity improvement in third-generation gravitational-wave interferometers. We consider the application of our system to long-baseline interferometers such as a future squeezed-light upgraded GEO 600 detector.
Optics Letters | 2011
S. Ast; Ramon Moghadas Nia; A. Schönbeck; N. Lastzka; J. Steinlechner; T. Eberle; M. Mehmet; S. Steinlechner; Roman Schnabel
We report on the observation of high-efficiency frequency doubling of 1550 nm continuous-wave laser light in a nonlinear cavity containing a periodically poled potassium titanyl phosphate crystal (PPKTP). The fundamental field had a power of 1.10 W and was converted into 1.05 W at 775 nm, yielding a total external conversion efficiency of 95±1%. The latter value is based on the measured depletion of the fundamental field being consistent with the absolute values derived from numerical simulations. According to our model, the conversion efficiency achieved was limited by the nonperfect mode matching into the nonlinear cavity and by the nonperfect impedance matching for the maximum input power available. Our result shows that cavity-assisted frequency conversion based on PPKTP is well suited for low-decoherence frequency conversion of quantum states of light.
Classical and Quantum Gravity | 2012
A. Khalaidovski; H. Vahlbruch; N. Lastzka; Christian Gräf; Karsten Danzmann; Hartmut Grote; Roman Schnabel
Currently, the German/British gravitational wave (GW) detector GEO 600 is being upgraded within the GEO-HF program. One part of this upgrade consists of the integration of a squeezed-light laser to non-classically improve the detection sensitivity at frequencies where the instrument is limited by shot noise. This has been achieved recently (Abadie et al 2011 Nature Phys. 7 962). The permanent employment of squeezed light in GW observatories requires long-term stability of the generated squeezed state. In this paper, we discuss an unwanted mechanism that can lead to a varying squeezing factor along with a changing phase of the squeezed field. We present an extension of the implemented coherent control scheme (Vahlbruch et al 2006 Phys. Rev. Lett. 97 011101) that allowed an increase in the long-term stability of the GEO 600 squeezed-light laser. With it, a quantum noise reduction of more than 9 dB within the detection band of todays and next-generation GW observatories was observed up to 20 h with a duty cycle of more than 99%.
Classical and Quantum Gravity | 2016
K. L. Dooley; J. R. Leong; T. Adams; C. Affeldt; A. Bisht; C. Bogan; J. Degallaix; Christian Gräf; S. Hild; J. Hough; A. Khalaidovski; N. Lastzka; J. Lough; H. Lück; D. M. Macleod; L. K. Nuttall; M Prijatelj; Roman Schnabel; E. Schreiber; J. Slutsky; B. Sorazu; K. A. Strain; H. Vahlbruch; M Wąs; B. Willke; H. Wittel; Karsten Danzmann; Hartmut Grote
The German–British laser-interferometric gravitational wave detector GEO 600 is in its 14th year of operation since its first lock in 2001. After GEO 600 participated in science runs with other first-generation detectors, a program known as GEO-HF began in 2009. The goal was to improve the detector sensitivity at high frequencies, around 1 kHz and above,with technologically advanced yet minimally invasive upgrades. Simultaneously, the detector would record science quality data in between commissioning activities. As of early 2014, all of the planned upgrades have been carried out and sensitivity improvements of up to a factor of four at the high-frequency end of the observation band have been achieved. Besides science data collection, an experimental program is ongoing with the goal to further improve the sensitivity and evaluate future detector technologies. We summarize the results of the GEO-HF program to date and discuss its successes and challenges.
Optics Letters | 2007
N. Lastzka; Roman Schnabel
We theoretically analyze the influence of the Gouy phase shift on the nonlinear interaction between waves of different frequencies. We focus on chi((2))interaction of optical fields, e.g. through birefringent crystals, and show that focussing, stronger than suggested by the Boyd-Kleinman factor, can further improve nonlinear processes. An increased value of 3.32 for the optimal focussing parameter for a single pass process is found. The new value builds on the compensation of the Gouy phase shift by a spatially varying, instead constant, wave vector phase mismatch. We analyze the single-ended, singly resonant standing wave nonlinear cavity and show that in this case the Gouy phase shift leads to an additional phase during backreflection. Our numerical simulations may explain ill-understood experimental observations in such devices.
Applied Optics | 2010
N. Lastzka; J. Steinlechner; S. Steinlechner; Roman Schnabel
We present a method for the measurement of small optical absorption coefficients. The method exploits the deformation of cavity Airy peaks that occur if the cavity contains an absorbing material with a nonzero thermorefractive coefficient dn/dT or a nonzero expansion coefficient α(th). Light absorption leads to a local temperature change and to an intensity-dependent phase shift, i.e., to a photothermal self-phase modulation. The absorption coefficient is derived from a comparison of time-resolved measurements with a numerical time-domain simulation applying a Markov-chain Monte Carlo algorithm. We apply our method to the absorption coefficient of lithium niobate doped with 7 mol. % magnesium oxide and derive a value of α(LN) = (5.9 ± 0.9) × 10(-4)/cm. Our method should also apply to materials with much lower absorption coefficients. Based on our modeling, we estimate that, with cavity finesse values of the order of 10(4), absorption coefficients of as low as 10(-8)/cm can be measured.
Classical and Quantum Gravity | 2013
J. Steinlechner; Christoph Krüger; N. Lastzka; S. Steinlechner; A. Khalaidovski; Roman Schnabel
Crystalline silicon is currently being discussed as test-mass material for future generations of gravitational wave detectors that will operate at cryogenic temperatures. We present optical absorption measurements on a large-dimension sample of crystalline silicon at a wavelength of 1550nm at room temperature. The absorption was measured in a monolithic cavity setup using the photo-thermal self-phase modulation technique. The result for the absorption coefficient of this float-zone sample with a specific resistivity of 11kOhm cm was measured to be \alpha_A=(264 +/- 39)ppm/cm.