Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where N. M. Davies is active.

Publication


Featured researches published by N. M. Davies.


International Journal of Pharmaceutics | 2000

Mechanisms by which cyclodextrins modify drug release from polymeric drug delivery systems

David C Bibby; N. M. Davies; Ian G. Tucker

For many drug candidates a modified in vivo drug release is desired to improve efficacy, sustain effect or minimise toxicity. Polymeric delivery systems, such as microspheres, nanospheres and polymeric films, have been extensively researched in an attempt to achieve modified drug release. Cyclodextrins offer an alternative approach. These cyclic oligosaccharides have the ability to form non-covalent complexes with a number of drugs and in so doing alter their physicochemical properties. In addition, the primary and secondary hydroxyl groups of the native (alpha, beta, gamma-) cyclodextrins are potential sites for chemical modification. It follows that the incorporation of these agents into polymeric drug delivery systems, as physical mixtures, covalently bound conjugates or cross-linking agents, frequently permits a greater degree of control of drug release. This paper reviews the incorporation of various cyclodextrins into polymeric formulations. The mechanisms by which cyclodextrin/polymer formulations act to modify drug release are considered.


Clinical and Experimental Pharmacology and Physiology | 2000

Biopharmaceutical considerations in topical ocular drug delivery.

N. M. Davies

1. Despite the accessibility of the front of the eye, efficient delivery of drug to treat various ocular disorders is a challenge to the formulation scientist. The majority of ophthalmic medications are formulated as eye drops. Due to anatomical constraints, the volume that can be administered is limited to approximately 30 μL. This, together with the efficient clearance system that exists in the front of the eye, makes it difficult to maintain an effective pre‐ocular drug concentration for a desired length of time. Various formulation strategies have been used to increase pre‐ocular retention of eye drops. The most successful of these has been the inclusion of viscosity enhancing polymers, particularly those able to interact with the mucous layer on the eye surface or those that can undergo a transition from a solution to a gel under the conditions of the pre‐ocular area.


Vaccine | 2003

Liposomal delivery of antigen to human dendritic cells

Melissa J Copland; Margaret A. Baird; Thomas Rades; Judith L. McKenzie; Bernd Becker; Folkert Reck; Peter C. Tyler; N. M. Davies

This study investigated whether formulation of antigen in mannosylated liposomes enhanced uptake and activation of dendritic cells (DC) and increased the ability of DC to induce primed T cell proliferation compared to formulation of antigen in unmodified liposomes or in solution. Immature human DC were generated from peripheral blood monocytes cultured with GM-CSF and IL-4. Uptake of antigen by DC and the degree of expression of the cell surface markers MHC class II, CD80, CD86 and the DC maturation marker CD83, was investigated by flow cytometry following incubation with liposomes or solution containing FITC-conjugated antigen. Exposure to liposomes containing FITC-ovalbumin resulted in enhanced expression of cell surface markers when compared to exposure to antigen in solution. Expression was highest following exposure to mannosylated liposomes. Mannosylated liposomes containing tetanus toxoid (TT) stimulated primed T cell proliferation more effectively than TT-neutral liposomes or TT-solution. This work suggests that mannosylated liposomes provide a versatile delivery vehicle for initiating enhanced immune responses to encapsulated peptide or protein vaccines.


Pharmaceutical Research | 2000

Preparation of biodegradable insulin nanocapsules from biocompatible microemulsions

Suchat Watnasirichaikul; N. M. Davies; Thomas Rades; Ian G. Tucker

AbstractPurpose. To prepare poly(ethyl 2-cyanoacrylate) nanocapsulescontaining insulin by interfacial polymerization of spontaneously forming,biocompatible microemulsions. Methods. A pseudo-ternary phase diagram of a mixture of mediumchain glycerides (caprylic/capric triglycerides and mono-/diglycerides),a mixture of surfactants (polysorbate 80 and sorbitan mono-oleate) andwater was constructed. Polarizing light microscopy was used to identifycombinations forming microemulsions. Microemulsions werecharacterized by conductivity and viscosity to select systems suitable for thepreparation of poly(ethyl 2-cyanoacrylate) nanocapsules by interfacialpolymerization. Nanocapsules were prepared by addition of 100 mgof ethyl 2-cyanoacrylate to a stirred water-in-oil microemulsioncontaining 1 g of water, 7.6 g of oil, and 1.4 g of surfactant. Thenanocapsules formed were characterized by photon correlation spectroscopy,freeze fracture transmission and scanning electron microscopy. Insulinnanocapsules were prepared by using an aqueous solution of insulin(100 units/ml) as the dispersed phase of the microemulsion. Theentrapment and the release of insulin from the nanocapsules were determined. Results. Three regions were identified in the pseudo-ternary phasediagram; a microemulsion region, a region in which liquid crystallinestructures were present and a coarse emulsion region. All systems inthe microemulsion region were water-in-oil dispersions.Poly(ethyl 2-cyanoacrylate) nanocapsules having a mean particle size of 150.9 nmwere formed upon interfacial polymerization of the microemulsion.Nanocapsules were found to have a central cavity surrounded by apolymer wall. In excess of 80;pc of the insulin present in themicroemulsion was encapsulated upon interfacial polymerization. Conclusions. Interfacial polymerization of spontaneously formingwater-in-oil microemulsions represents a convenient method for thepreparation of poly(alkylcyanoacrylate) nanocapsules suitable for theentrapment of bioactive peptides.


Drug Development and Industrial Pharmacy | 2001

Characterizing colloidal structures of pseudoternary phase diagrams formed by oil/water/amphiphile systems

Raid G. Alany; Ian G. Tucker; N. M. Davies; Thomas Rades

Two pseudoternary phase diagrams were constructed using ethyl oleate, water, and a surfactant blend containing poly (oxyethylene 20) sorbitan monooleate and sorbitan monolaurate with or without the cosurfactant 1-butanol. Two colloidal regions were identified in the cosurfactant-free phase diagram; a microemulsion (ME) and a region containing lamellar liquid crystals (LC). The addition of 1-butanol increased the area in which systems formed microemulsions and eliminated the formation of any liquid crystalline phases. Samples that form the colloidal regions of both systems were investigated by freeze-fracture transmission electron microscopy and by viscosity and conductivity measurements. The three techniques were compared and evaluated as characterisation tools for such colloidal systems and also to identify transitions between the colloidal systems formed. A droplet ME was present at a low water volume fraction (ϕw) in both systems (ϕw <0.15) as revealed by electron microscopy. At higher ϕw values, LC structures were observed in micrographs of samples taken from the cosurfactant-free system while the structure of samples from the cosurfactant-containing system was that of a bicontinuous ME. The viscosity of both systems increased with increasing ϕw to 0.15 and flow was Newtonian. However, formation of LC in the cosurfactant-free system resulted in a dramatic increase in viscosity that was dependent on ϕw and a change to pseudoplastic flow. In contrast, the viscosity of the bicontinuous ME was independent of ϕw. Three different methods were used to estimate the percolation threshold from the conductivity data for the cosurfactant-containing system. The use of nonlinear curve fitting was found to be most useful yielding a value close to 0.15 for the ϕw.


International Journal of Pharmaceutics | 2000

Effects of alcohols and diols on the phase behaviour of quaternary systems

Raid G. Alany; Thomas Rades; Snezana Agatonovic-Kustrin; N. M. Davies; Ian G. Tucker

The aim of the current study was to investigate the effect of different co-surfactants on the phase behaviour of the pseudoternary system water:ethyl oleate:nonionic surfactant blend (sorbitan monolaurate/polyoxyethylene 20 sorbitan mono-oleate). Four aliphatic alcohols (1-propanol, 1-butanol, 1-hexanol and 1-octanol) and four 1, 2-alkanediols (1,2-propanediol, 1,2-pentanediol, 1,2-hexanediol and 1,2-octanediol) were used. The co-surfactant-free system forms two different colloidal structures, a water-in-oil microemulsion (w/o ME) and lamellar liquid crystals (LC) and two coarse dispersions, water-in-oil (w/o EM) and oil-in-water (o/w EM) emulsions. Microemulsion region area (%ME), liquid crystalline region area (%LC), amount of amphiphile blend required to produce a balanced microemulsion (%AMPH) and amount of water solubilised (%W) were used as assessment criteria to evaluate the co-surfactants. Seven calculated physico-chemical descriptors were used to represent the different co-surfactants. 1-butanol, 1,2-hexanediol and 1, 2-octanediol produced balanced MEs capable of solubilising a high percentage of both oil and water. A similarity was observed between the descriptors attributed to 1-butanol and 1,2-hexanediol. The requirements of a co-surfactant molecule to produce a balanced microemulsion were: HLB value 7.0-8.0, a carbon backbone of 4-6 atoms, percentage carbon of 60-65%, percentage oxygen of 20-30%, logP value 0.2-0.9 and log 1/S (S: aqueous solubility) close to zero.


Immunology and Cell Biology | 2005

Lipid based particulate formulations for the delivery of antigen

Melissa J Copland; Thomas Rades; N. M. Davies; Margaret A. Baird

Particulate adjuvant systems are largely classified according to their functional characteristics, such as the nature of the typical immune response they induce, or their perceived mode of action. From a formulation science perspective, it is practical to classify antigen delivery systems according to the physical nature of the formulations. This article discusses lipid based particulate systems, grouped according to the nature of their predominant lipid constituent.


Journal of Pharmacy and Pharmacology | 2002

In-vitro release and oral bioactivity of insulin in diabetic rats using nanocapsules dispersed in biocompatible microemulsion.

Suchat Watnasirichaikul; Thomas Rades; Ian G. Tucker; N. M. Davies

This study evaluated the potential of poly(iso‐butyl cyanoacrylate) (PBCA) nanocapsules dispersed in a biocompatible microemulsion to facilitate the absorption of insulin following intragastric administration to diabetic rats. Insulin‐loaded PBCA nanocapsules were prepared in‐situ in a biocompatible water‐in‐oil microemulsion by interfacial polymerisation. The microemulsion consisted of a mixture of medium‐chain mono‐, di‐ and tri‐glycerides as the oil component, polysorbate 80 and sorbitan mono‐oleate as surfactants and an aqueous solution of insulin. Resulting nanocapsules were approximately 200 nm in diameter and demonstrated a high efficiency of insulin entrapment (> 80%). In‐vitro release studies showed that PBCA nanocapsules could suppress insulin release in acidic media and that release at near neutral conditions could be manipulated by varying the amount of monomer used for polymerisation. Subcutaneous administration of insulin‐loaded nanocapsules to diabetic rats demonstrated that the bioactivity of insulin was largely retained following this method of preparing peptide‐loaded nanocapsules and that the pharmacodynamic response was dependent on the amount of monomer used for polymerisation. The intragastric administration of insulin‐loaded nanocapsules dispersed in the biocompatible microemulsion resulted in a significantly greater reduction in blood glucose levels of diabetic rats than an aqueous insulin solution or insulin formulated in the same microemulsion. This study demonstrates that the formulation of peptides within PBCA nanocapsules that are administered dispersed in a microemulsion can facilitate the oral absorption of encapsulated peptide. Such a system can be prepared in‐situ by the interfacial polymerisation of a water‐in‐oil biocompatible microemulsion.


International Journal of Pharmaceutics | 2002

Effects of formulation variables on characteristics of poly (ethylcyanoacrylate) nanocapsules prepared from w/o microemulsions

Suchat Watnasirichaikul; Thomas Rades; Ian G. Tucker; N. M. Davies

The effect of several formulation variables on some of the physico-chemical characteristics of poly (ethyl cyanoacrylate) (PECA) nanocapsules prepared by the interfacial polymerisation of biocompatible water-in-oil microemulsions was investigated. In all cases, yields were high (>90%) and the polydispersity in size of nanocapsules was narrow. The molecular weight of the nanocapsules formed was influenced by the pH of the aqueous component of the microemulsion, increasing with increasing pH. The size of the nanocapsules formed (ranging from around 130 to 180 nm) was a function of the ratio of the mass of monomer used to the water weight fraction of the microemulsion, increasing as this ratio was increased. This is due to the formation of a thicker polymer wall resulting from the increased mass of monomer available per unit interfacial area as this ratio is increased. The rate of release of insulin from nanocapsules was also influenced by this ratio, in agreement with its effect on wall thickness. This study demonstrates that many pharmaceutically relevant physico-chemical properties of poly (alkyl cyanoacrylate) (PACA) nanocapsules prepared by interfacial polymerisation of microemulsions can readily be manipulated by changing either the pH of the aqueous component, the water weight fraction of the microemulsion or the mass of monomer used for polymerisation.


Journal of Immunology | 2009

Antigen-Specific Suppression of Inflammatory Arthritis Using Liposomes

C. Capini; Montree Jaturanpinyo; Hsin-I Chang; Srinivas Mutalik; Alice McNally; Shayna Street; Raymond J. Steptoe; Brendan J. O'Sullivan; N. M. Davies; Ranjeny Thomas

Existing therapies for rheumatoid arthritis and other autoimmune diseases are not Ag specific, which increases the likelihood of systemic toxicity. We show that egg phosphatidylcholine liposomes loaded with Ag (OVA or methylated BSA) and a lipophilic NF-κB inhibitor (curcumin, quercetin, or Bay11-7082) suppress preexisting immune responses in an Ag-specific manner. We injected loaded liposomes into mice primed with Ag or into mice suffering from Ag-induced inflammatory arthritis. The liposomes targeted APCs in situ, suppressing the cells’ responsiveness to NF-κB and inducing Ag-specific FoxP3+ regulatory T cells. This regulatory mechanism suppressed effector T cell responses and the clinical signs of full-blown Ag-induced arthritis. Thus, liposomes encapsulate Ags and NF-κB inhibitors stably and efficiently and could be readily adapted to deliver Ags and inhibitors for Ag-specific suppression of other autoimmune and allergic diseases.

Collaboration


Dive into the N. M. Davies's collaboration.

Top Co-Authors

Avatar

Thomas Rades

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Istvan Toth

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge