N. M. Förster Schreiber
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N. M. Förster Schreiber.
Astronomy and Astrophysics | 2011
D. Elbaz; M. Dickinson; H. S. Hwang; T. Díaz-Santos; G. Magdis; B. Magnelli; D. Le Borgne; F. Galliano; M. Pannella; P. Chanial; Lee Armus; V. Charmandaris; E. Daddi; H. Aussel; P. Popesso; J. Kartaltepe; B. Altieri; I. Valtchanov; D. Coia; H. Dannerbauer; K. Dasyra; R. Leiton; Joseph M. Mazzarella; D. M. Alexander; V. Buat; D. Burgarella; Ranga-Ram Chary; R. Gilli; R. J. Ivison; S. Juneau
We present the deepest 100 to 500 μm far-infrared observations obtained with the Herschel Space Observatory as part of the GOODS-Herschel key program, and examine the infrared (IR) 3–500 μm spectral energy distributions (SEDs) of galaxies at 0 < z < 2.5, supplemented by a local reference sample from IRAS, ISO, Spitzer, and AKARI data. We determine the projected star formation densities of local galaxies from their radio and mid-IR continuum sizes. We find that the ratio of total IR luminosity to rest-frame 8 μm luminosity, IR8 (≡ L_(IR)^(tot)/L_8), follows a Gaussian distribution centered on IR8 = 4 (σ = 1.6) and defines an IR main sequence for star-forming galaxies independent of redshift and luminosity. Outliers from this main sequence produce a tail skewed toward higher values of IR8. This minority population ( 3 × 10^(10) L_⊙ kpc^(-2)) and a high specific star formation rate (i.e., starbursts). The rest-frame, UV-2700 A size of these distant starbursts is typically half that of main sequence galaxies, supporting the correlation between star formation density and starburst activity that is measured for the local sample. Locally, luminous and ultraluminous IR galaxies, (U)LIRGs (L_(IR)^(tot)≥ 10^(11) L_☉), are systematically in the starburst mode, whereas most distant (U)LIRGs form stars in the “normal” main sequence mode. This confusion between two modes of star formation is the cause of the so-called “mid-IR excess” population of galaxies found at z > 1.5 by previous studies. Main sequence galaxies have strong polycyclic aromatic hydrocarbon (PAH) emission line features, a broad far-IR bump resulting from a combination of dust temperatures (T_(dust) ~ 15–50 K), and an effective T_(dust) ~ 31 K, as derived from the peak wavelength of their infrared SED. Galaxies in the starburst regime instead exhibit weak PAH equivalent widths and a sharper far-IR bump with an effective T_(dust)~ 40 K. Finally, we present evidence that the mid-to-far IR emission of X-ray active galactic nuclei (AGN) is predominantly produced by star formation and that candidate dusty AGNs with a power-law emission in the mid-IR systematically occur in compact, dusty starbursts. After correcting for the effect of starbursts on IR8, we identify new candidates for extremely obscured AGNs.
The Astrophysical Journal | 2011
G. Rodighiero; E. Daddi; I. Baronchelli; A. Cimatti; A. Renzini; H. Aussel; P. Popesso; D. Lutz; Paola Andreani; S. Berta; A. Cava; D. Elbaz; A. Feltre; A. Fontana; N. M. Förster Schreiber; A. Franceschini; R. Genzel; A. Grazian; C. Gruppioni; O. Ilbert; E. Le Floc'h; G. Magdis; M. Magliocchetti; B. Magnelli; R. Maiolino; H. J. McCracken; R. Nordon; A. Poglitsch; P. Santini; F. Pozzi
Two main modes of star formation are know to control the growth of galaxies: a relatively steady one in disk-like galaxies, defining a tight star formation rate (SFR)-stellar mass sequence, and a starburst mode in outliers to such a sequence which is generally interpreted as driven by merging. Such starburst galaxies are rare but have much higher SFRs, and it is of interest to establish the relative importance of these two modes. PACS/Herschel observations over the whole COSMOS and GOODS-South fields, in conjunction with previous optical/near-IR data, have allowed us to accurately quantify for the first time the relative contribution of the two modes to the global SFR density in the redshift interval 1.5 1000 M ☉ yr-1, off-sequence sources significantly contribute to the SFR density (46% ± 20%). We conclude that merger-driven starbursts play a relatively minor role in the formation of stars in galaxies, whereas they may represent a critical phase toward the quenching of star formation and morphological transformation in galaxies.
The Astrophysical Journal | 2011
R. Genzel; S. Newman; Terry Jay Jones; N. M. Förster Schreiber; Kristen L. Shapiro; Shy Genel; S. Lilly; A. Renzini; L. J. Tacconi; N. Bouché; Andreas Burkert; G. Cresci; Peter Buschkamp; C. M. Carollo; Daniel Ceverino; R. Davies; Avishai Dekel; F. Eisenhauer; E. K. S. Hicks; J. Kurk; D. Lutz; C. Mancini; Thorsten Naab; Yingjie Peng; A. Sternberg; D. Vergani; G. Zamorani
We have studied the properties of giant star-forming clumps in five z ~ 2 star-forming disks with deep SINFONI AO spectroscopy at the ESO VLT. The clumps reside in disk regions where the Toomre Q-parameter is below unity, consistent with their being bound and having formed from gravitational instability. Broad H?/[N II] line wings demonstrate that the clumps are launching sites of powerful outflows. The inferred outflow rates are comparable to or exceed the star formation rates, in one case by a factor of eight. Typical clumps may lose a fraction of their original gas by feedback in a few hundred million years, allowing them to migrate into the center. The most active clumps may lose much of their mass and disrupt in the disk. The clumps leave a modest imprint on the gas kinematics. Velocity gradients across the clumps are 10-40 km s?1 kpc?1, similar to the galactic rotation gradients. Given beam smearing and clump sizes, these gradients may be consistent with significant rotational support in typical clumps. Extreme clumps may not be rotationally supported; either they are not virialized or they are predominantly pressure supported. The velocity dispersion is spatially rather constant and increases only weakly with star formation surface density. The large velocity dispersions may be driven by the release of gravitational energy, either at the outer disk/accreting streams interface, and/or by the clump migration within the disk. Spatial variations in the inferred gas phase oxygen abundance are broadly consistent with inside-out growing disks, and/or with inward migration of the clumps.
Nature | 2006
R. Genzel; L. J. Tacconi; F. Eisenhauer; N. M. Förster Schreiber; A. Cimatti; E. Daddi; Nicolas Bouché; R. I. Davies; Matthew D. Lehnert; D. Lutz; Nicole Nesvadba; A. Verma; Roberto Abuter; K. Shapiro; A. Sternberg; A. Renzini; Xu Kong; Nobuo Arimoto; M. Mignoli
Observations and theoretical simulations have established a framework for galaxy formation and evolution in the young Universe. Galaxies formed as baryonic gas cooled at the centres of collapsing dark-matter haloes; mergers of haloes and galaxies then led to the hierarchical build-up of galaxy mass. It remains unclear, however, over what timescales galaxies were assembled and when and how bulges and disks—the primary components of present-day galaxies—were formed. It is also puzzling that the most massive galaxies were more abundant and were forming stars more rapidly at early epochs than expected from models. Here we report high-angular-resolution observations of a representative luminous star-forming galaxy when the Universe was only 20% of its current age. A large and massive rotating protodisk is channelling gas towards a growing central stellar bulge hosting an accreting massive black hole. The high surface densities of gas, the high rate of star formation and the moderately young stellar ages suggest rapid assembly, fragmentation and conversion to stars of an initially very gas-rich protodisk, with no obvious evidence for a major merger.
Astronomy and Astrophysics | 2011
D. Lutz; A. Poglitsch; B. Altieri; Paola Andreani; H. Aussel; S. Berta; A. Bongiovanni; D. Brisbin; A. Cava; J. Cepa; A. Cimatti; E. Daddi; H. Dominguez-Sanchez; D. Elbaz; N. M. Förster Schreiber; R. Genzel; A. Grazian; C. Gruppioni; Martin Harwit; G. Magdis; B. Magnelli; R. Maiolino; R. Nordon; A. M. Pérez García; P. Popesso; F. Pozzi; L. Riguccini; G. Rodighiero; A. Saintonge; M. Sánchez Portal
Deep far-infrared photometric surveys studying galaxy evolution and the nature of the cosmic infrared background are a key strength of the Herschel mission. We describe the scientific motivation for the PACS Evolutionary Probe (PEP) guaranteed time key program and its role within the entire set of Herschel surveys, and the field selection that includes popular multiwavelength fields such as GOODS, COSMOS, Lockman Hole, ECDFS, and EGS. We provide an account of the observing strategies and data reduction methods used. An overview of first science results illustrates the potential of PEP in providing calorimetric star formation rates for high-redshift galaxy populations, thus testing and superseding previous extrapolations from other wavelengths, and enabling a wide range of galaxy evolution studies.
Astronomy and Astrophysics | 2013
B. Magnelli; P. Popesso; S. Berta; F. Pozzi; D. Elbaz; D. Lutz; M. Dickinson; B. Altieri; P. Andreani; H. Aussel; M. Béthermin; A. Bongiovanni; J. Cepa; V. Charmandaris; R.-R. Chary; Alessandro Cimatti; E. Daddi; N. M. Förster Schreiber; R. Genzel; C. Gruppioni; Martin Harwit; Ho Seong Hwang; R. J. Ivison; G. Magdis; Roberto Maiolino; E. J. Murphy; R. Nordon; M. Pannella; A. M. Pérez García; A. Poglitsch
We present results from the deepest Herschel-Photodetector Array Camera and Spectrometer (PACS) far-infrared blank field extragalactic survey, obtained by combining observations of the Great Observatories Origins Deep Survey (GOODS) fields from the PACS Evolutionary Probe (PEP) and GOODS-Herschel key programmes. We describe data reduction and theconstruction of images and catalogues. In the deepest parts of the GOODS-S field, the catalogues reach 3σ depths of 0.9, 0.6 and 1.3 mJy at 70, 100 and 160 μm, respectively, and resolve ~75% of the cosmic infrared background at 100 μm and 160 μm into individually detected sources. We use these data to estimate the PACS confusion noise, to derive the PACS number counts down to unprecedented depths, and to determine the infrared luminosity function of galaxies down to L_(IR) = 10^(11) L⊙ at z ~ 1 and L_(IR) = 10^(12) L⊙ at z ~ 2, respectively. For the infrared luminosity function of galaxies, our deep Herschel far-infrared observations are fundamental because they provide more accurate infrared luminosity estimates than those previously obtained from mid-infrared observations. Maps and source catalogues (>3σ) are now publicly released. Combined with the large wealth of multi-wavelength data available for the GOODS fields, these data provide a powerful new tool for studying galaxy evolution over a broad range of redshifts.
Astronomy and Astrophysics | 2010
G. Rodighiero; A. Cimatti; C. Gruppioni; P. Popesso; Paola Andreani; B. Altieri; H. Aussel; S. Berta; A. Bongiovanni; D. Brisbin; A. Cava; J. Cepa; E. Daddi; H. Dominguez-Sanchez; D. Elbaz; A. Fontana; N. M. Förster Schreiber; A. Franceschini; R. Genzel; A. Grazian; D. Lutz; G. Magdis; M. Magliocchetti; B. Magnelli; R. Maiolino; C. Mancini; R. Nordon; A. M. Pérez García; A. Poglitsch; P. Santini
Aims. We exploit deep observations of the GOODS-N field taken with PACS, the Photodetector Array Camera and Spectrometer, onboard of Herschel, as part of the PACS evolutionary probe guaranteed time (PEP), to study the link between star formation and stellar mass in galaxies to z ∼ 2. Methods. Starting from a stellar mass – selected sample of ∼4500 galaxies with mag4.5 μm < 23.0 (AB), we identify ∼350 objects with a PACS detection at 100 or 160 μ ma nd∼ 1500 with only Spitzer 24 μm counterpart. Stellar masses and total IR luminosities (LIR) are estimated by fitting the spectral energy distributions (SEDs). Results. Consistently with other Herschel results, we find that LIR based only on 24 μm data is overestimated by a median factor ∼ 1. 8a tz ∼ 2, whereas it is underestimated (with our approach) up to a factor ∼ 1. 6a t 0.5 < z < 1.0. We then exploit this calibration to correct LIR based on the MIPS/Spitzer fluxes. These results clearly show how Herschel is fundamental to constrain LIR, and hence the star formation rate (SFR), of high redshift galaxies. Using the galaxies detected with PACS (and/or MIPS), we investigate the existence and evolution of the relations between the SFR, the specific star formation rate (SSFR=SFR/mass) and the stellar mass. Moreover, in order to avoid selection effects, we also repeat this study through a stacking analysis on the PACS images to fully exploit the far-IR information also for the Herschel and Spitzer undetected subsamples. We find that the SSFR-mass relation steepens with redshift, being almost flat at z < 1.0 and reaching a slope of α = −0.50 +0.13 −0.16 at z ∼ 2, at odds with recent works based on radio-stacking analysis at the same redshift. The mean SSFR of galaxies increases with redshift, by a factor ∼15 for
Astronomy and Astrophysics | 2012
D. Rosario; P. Santini; D. Lutz; L. Shao; R. Maiolino; D. M. Alexander; B. Altieri; P. Andreani; H. Aussel; F. E. Bauer; S. Berta; A. Bongiovanni; W. N. Brandt; M. Brusa; J. Cepa; A. Cimatti; Thomas J. Cox; E. Daddi; D. Elbaz; A. Fontana; N. M. Förster Schreiber; R. Genzel; A. Grazian; E. Le Floc'h; B. Magnelli; V. Mainieri; Hagai Netzer; R. Nordon; I. Pérez Garcia; A. Poglitsch
We study relationships between star-formation rate (SFR) and the accretion luminosity and nuclear obscuration of X-ray selected active galactic nuclei (AGNs) using a combination of deep far-infrared (FIR) and X-ray data in three key extragalactic survey fields (GOODS-South, GOODS-North and COSMOS), as part of the PACS Evolutionary Probe (PEP) program. The use of three fields with differing areas and depths enables us to explore trends between the global FIR luminosity of the AGN hosts and the luminosity of the active nucleus across 4.5 orders of magnitude in AGN luminosity (LAGN) and spanning redshifts from the Local Universe to z = 2.5. Using imaging from the Herschel/PACS instrument in 2−3 bands, we combine FIR detections and stacks of undetected objects to arrive at mean fluxes for subsamples in bins of redshift and X-ray luminosity. We constrain the importance of AGN-heated dust emission in the FIR and confirm that the majority of the FIR emission of AGNs is produced by cold dust heated by star-formation in their host galaxies. We uncover characteristic trends between the mean FIR luminosity (L60) and accretion luminosity of AGNs, which depend both on LAGN and redshift. At low AGN luminosities, accretion and SFR are uncorrelated at all redshifts, consistent with a scenario where most low-luminosity AGNs are primarily fueled by secular processes in their host galaxies. At high AGN luminosities, a significant correlation is observed between L60 and LAGN, but only among AGNs at low and moderate redshifts (z 1) suggesting that the role of mergers is less important at these epochs. At all redshifts, we find essentially no relationship between L60 and nuclear obscuration across five orders of magnitude in obscuring Hydrogen column density (NH), suggesting that various mechanisms are likely to be responsible for obscuring X-rays in active galaxies. We discuss a broad scenario which can account for these trends: one in which two different modes of AGN fueling operate in the low- and high-luminosity regimes of SMBH accretion. We postulate that the dominant mode of accretion among high-luminosity AGNs evolves with redshift. Our study, as well as a body of evidence from the literature and emerging knowledge about the properties of high redshift galaxies, supports this scenario.
Astronomy and Astrophysics | 2012
B. Magnelli; D. Lutz; P. Santini; A. Saintonge; S. Berta; M. Albrecht; B. Altieri; P. Andreani; H. Aussel; Frank Bertoldi; M. Béthermin; A. Bongiovanni; P. Capak; S. C. Chapman; J. Cepa; A. Cimatti; A. Cooray; E. Daddi; A. L. R. Danielson; H. Dannerbauer; James Dunlop; D. Elbaz; D. Farrah; N. M. Förster Schreiber; R. Genzel; Ho Seong Hwang; E. Ibar; R. J. Ivison; E. Le Floc'h; G. Magdis
We study a sample of 61submillimetre galaxies (SMGs) selected from ground-based surveys, with known spectroscopic redshifts and observed with the Herschel Space Observatory as part of the PACS Evolutionary Probe (PEP) and the Herschel Multi-tiered Extragalactic Survey (HerMES) guaranteed time key programmes. Our study makes use of the broad far-infrared and submillimetre wavelength coverage (100−600 μm) only made possible by the combination of observations from the PACS and SPIRE instruments aboard the Herschel Space Observatory. Using a power-law temperature distribution model to derive infrared luminosities and dust temperatures, we measure a dust emissivity spectral index for SMGs of β = 2.0 ± 0.2. Our results unambiguously unveil the diversity of the SMG population. Some SMGs exhibit extreme infrared luminosities of ~10^(13) L_⊙ and relatively warm dust components, while others are fainter (a few times 10^(12) L_⊙) and are biased towards cold dust temperatures. Although at z~2 classical SMGs (>5 mJy at 850 μm) have large infrared luminosities (~10^(13) L_⊙ ), objects only selected on their submm flux densities (without any redshift informations) probe a large range in dust temperatures and infrared luminosities. The extreme infrared luminosities of some SMGs (L_IR ≳ 10^(12.7) L_⊙, 26/61 systems) imply star formation rates (SFRs) of >500 M_⊙ yr^(-1) (assuming a Chabrier IMF and no dominant AGN contribution to the FIR luminosity). Such high SFRs are difficult to reconcile with a secular mode of star formation, and may instead correspond to a merger-driven stage in the evolution of these galaxies. Another observational argument in favour of this scenario is the presence of dust temperatures warmer than that of SMGs of lower luminosities (~40 K as opposed to ~25 K), consistent with observations of local ultra-luminous infrared galaxies triggered by major mergers and with results from hydrodynamic simulations of major mergers combined with radiative transfer calculations. Moreover, we find that luminous SMGs are systematically offset from normal star-forming galaxies in the stellar mass-SFR plane, suggesting that they are undergoing starburst events with short duty cycles, compatible with the major merger scenario. On the other hand, a significant fraction of the low infrared luminosity SMGs have cold dust temperatures, are located close to the main sequence of star formation, and therefore might be evolving through a secular mode of star formation. However, the properties of this latter population, especially their dust temperature, should be treated with caution because at these luminosities SMGs are not a representative sample of the entire star-forming galaxy population.
The Astrophysical Journal | 2015
Emily Wisnioski; N. M. Förster Schreiber; Stijn Wuyts; Eva Wuyts; K. Bandara; David J. Wilman; R. Genzel; Ralf Bender; R. Davies; Matteo Fossati; P. Lang; J. T. Mendel; A. Beifiori; Gabriel B. Brammer; J. Chan; M. Fabricius; Y. Fudamoto; Sandesh K. Kulkarni; J. Kurk; D. Lutz; Erica J. Nelson; Ivelina Momcheva; D. Rosario; R. P. Saglia; S. Seitz; L. J. Tacconi; P. G. van Dokkum
We present the KMOS3D survey, a new integral field survey of over 600 galaxies at 0.7 1, implying that the star-forming main sequence is primarily composed of rotating galaxies at both redshift regimes. When considering additional stricter criteria, the Hα kinematic maps indicate that at least ~70% of the resolved galaxies are disk-like systems. Our high-quality KMOS data confirm the elevated velocity dispersions reported in previous integral field spectroscopy studies at z 0.7. For rotation-dominated disks, the average intrinsic velocity dispersion decreases by a factor of two from 50 km s–1at z ~ 2.3 to 25 km s–1at z ~ 0.9. Combined with existing results spanning z ~ 0-3, we show that disk velocity dispersions follow an evolution that is consistent with the dependence of velocity dispersion on gas fractions predicted by marginally stable disk theory.