Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where N. M. Long is active.

Publication


Featured researches published by N. M. Long.


Journal of Animal Science | 2010

Maternal obesity and increased nutrient intake before and during gestation in the ewe results in altered growth, adiposity, and glucose tolerance in adult offspring

N. M. Long; Lindsey A. George; Adam B. Uthlaut; Derek T. Smith; Mark J. Nijland; Peter W. Nathanielsz; Stephen P. Ford

We evaluated the effects of preconception and gestational obesity in the ewe on offspring growth, metabolism, and glucose homeostasis. From 60 d before conception through parturition, multiparous ewes were fed 100% (control; n = 8) or 150% (obese, OB; n = 10) of NRC (1985) recommendations. Ewes on the OB diet increased BW by 30% from diet initiation to mating (P = 0.03) and by 52% by d 135 of gestation (P = 0.04), whereas control ewes increased BW by 7% (P = 0.65) from diet initiation to d 135 of gestation. Lambs were weaned at 120 d of age and were maintained as a group. At 19.5 ± 0.5 mo of age, offspring from control and OB ewes were individually penned and subjected to a 12-wk ad libitum feeding challenge. At the beginning and end of the feeding challenge, dual x-ray absorptiometry was used to determine percentage of body fat, and a frequently sampled intravenous glucose tolerance test (FSIGT) with minimal model analysis was used to assess insulin and glucose homeostasis. At the beginning of the feeding challenge, BW and percentage of body fat were similar for control and OB offspring, averaging 69.0 ± 1.5 kg and 5.3 ± 0.5%, respectively. At the initial FSIGT, glucose effectiveness and insulin sensitivity were reduced (P < 0.05) in offspring from OB compared with control ewes. During the feeding challenge, plasma concentrations of leptin were increased (P < 0.05) in offspring from OB compared with control ewes. Fasted plasma glucose before the feeding challenge tended to be greater (P = 0.06) in the OB offspring compared with the control offspring (83.3 ± 1.4 vs. 79.0 ± 1.6 mg/dL, respectively). At the end of the feeding challenge, fasted plasma glucose and insulin were increased (P < 0.05) in the OB offspring compared with the control offspring (84.0 ± 1.4 vs. 79.5 ± 1.5 mg/dL and 30.1 ± 2.1 vs. 23.4 ± 2.2 µIU/mL, respectively). During the feeding challenge, offspring from OB ewes consumed approximately 10% more feed (P < 0.05) and tended to have increased BW gain (approximately 14%; P = 0.08) compared with offspring from control ewes. At the final dual x-ray absorptiometry scan, percentage of body fat was greater (P < 0.05) for offspring from OB ewes than for offspring from control ewes (16.5 ± 1.2 vs. 10.8 ± 1.1%). At the final FSIGT, offspring from OB ewes had a decreased (P ≤ 0.05) acute insulin response to glucose, disposition index, and glucose effectiveness, and tended (P = 0.10) to have a decreased insulin sensitivity compared with offspring from control ewes. Maternal obesity induced before and during gestation leads to alterations in appetite, glucose and insulin regulation, and adiposity of mature offspring.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010

Maternal obesity markedly increases placental fatty acid transporter expression and fetal blood triglycerides at midgestation in the ewe

Mei J. Zhu; Yan Ma; N. M. Long; Min Du; Stephen P. Ford

Obesity of women at conception is increasing, a condition associated with offspring obesity. We hypothesized that maternal obesity increases placental fatty acid transporter (FATP) expression, enhancing delivery of fatty acids to their fetuses. Sheep are a commonly utilized biomedical model for pregnancy studies. Nonpregnant ewes were randomly assigned to a control group [100% of National Research Council (NRC) recommendations] or obese group (OB, 150% of NRC) from 60 days before conception to 75 or 135 days of gestation (dG; term = 150 dG), when placental cotyledonary tissue was collected for analysis. Fetuses of OB ewes were markedly heavier (P < 0.05) on 75 dG than fetuses from control ewes, but this difference disappeared by 135 dG. Maternal obesity markedly increased (P < 0.05) cholesterol and triglyceride concentrations of both maternal and fetal blood. There is no difference in lipoprotein lipase mRNA expression between control and OB group at either gestational age. On 75 dG, the mRNA expression of FATP1 (P < 0.05), FATP4 (P = 0.08), and fatty acid translocase CD (cluster of differentiation) 36 (P < 0.05) proteins were more enhanced in cotyledonary tissue from OB than control ewes; consistently, protein expression of FATP1 and FATP4 was increased (P < 0.05). Similarly, on 135 dG, the mRNA levels of FATP1, FATP4, and CD36 were all higher (P < 0.05), but only FATP4 protein content was enhanced (P < 0.05) in OB cotyledonary tissue. Peroxisome proliferator-activated receptor (PPAR)-γ regulates the expression of FATPs. Both the mRNA expression and protein content of PPARγ were increased in OB cotyledonary in the midgestation. In conclusion, maternal obesity enhances the mRNA expression and protein content of FATPs in cotyledonary in the midgestation, which is associated with higher PPARγ content in cotyledonary.


Biology of Reproduction | 2011

Maternal Obesity-Impaired Insulin Signaling in Sheep and Induced Lipid Accumulation and Fibrosis in Skeletal Muscle of Offspring

Xu Yan; Yan Huang; Junxing Zhao; N. M. Long; Adam B. Uthlaut; Mei-Jun Zhu; Stephen P. Ford; Peter W. Nathanielsz; Min Du

The prevalence of maternal obesity is increasing rapidly in recent decades. We previously showed that maternal obesity affected skeletal muscle development during the fetal stage. The objective of this study was to evaluate the effects of maternal obesity on the skeletal muscle properties of offspring. Ewes were fed a control diet (100% energy requirement, Con) or an obesogenic diet (150% energy requirement, OB) from 2 mo before pregnancy to weaning. After weaning, the offspring lambs were fed a maintenance diet until 19 mo of age and then ad libitum for 12 wk to measure feed intake. At 22 mo old, the longissimus dorsi (LD) muscle was biopsied. The downstream insulin signaling was lower in OB than Con lambs as shown by reduction in the phosphorylation of protein kinase B, mammalian target of rapamycin, and 4-E binding protein 1. On the other hand, the phosphorylation of protein kinase C and insulin receptor substrate 1 was higher in OB compared to Con lambs. More intramuscular adipocytes were observed in OB compared to Con offspring muscle, and the expression of peroxisome proliferator-activated receptor gamma, an adipocyte marker, was also higher, which was consistent with the higher intramuscular triglyceride content. Both fatty acid transport protein 1 and cluster of differentiation 36 (also known as fatty acid translocase) were increased in the OB group. In addition, higher collagen content was also detected in OB compared to Con offspring. In conclusion, our data show that offspring from obese mothers had impaired insulin signaling in muscle compared with control lambs, which correlates with increased intramuscular triglycerides and higher expression of fatty acid transporters. These data clearly show that maternal obesity impairs the function of the skeletal muscle of offspring, supporting the fetal programming of adult metabolic diseases.


The Journal of Physiology | 2011

Maternal obesity eliminates the neonatal lamb plasma leptin peak

N. M. Long; Stephen P. Ford; Peter W. Nathanielsz

Non technical summary  Leptin, an adipose tissue hormone, inhibits the brains central drive to eat, enabling maintenance of normal body weight and composition. The leptin peak present in newborn rodents controls development of brain appetite regulatory areas, and alteration in its timing and amplitude predisposes to obesity in later life. However, unlike humans, rodents are born at an immature stage of development so to determine potential relevance to human development, we examined the leptin peak in newborn lambs, born at a more advanced level of maturity equivalent to humans. The normal peak was absent in lambs born to obese mothers who showed higher newborn levels of plasma cortisol. We conclude that similarities and differences exist in neonatal leptin in species born immature or mature. This information aids understanding of effects of the obesity epidemic in women on their offspring and will help promote diagnosis, prevention and therapy.


Journal of Animal Science | 2009

Effects of early gestational undernutrition on fetal growth, organ development, and placentomal composition in the bovine

N. M. Long; K. A. Vonnahme; B. W. Hess; Peter W. Nathanielsz; Stephen P. Ford

Fetal intrauterine growth restriction (IUGR) is known to negatively affect offspring health postnatally. This study evaluated the impacts of early gestational undernutrition followed by realimentation on bovine fetal and placental growth. Thirty multiparous beef cows bred to a single sire and gestating female fetuses were fed to meet NRC recommendations (control; n = 15) or fed below NRC recommendations (68.1% of NE(m) and 86.7% of MP recommendations; nutrient restricted, NR; n = 15) from d 30 to 125 of gestation. On d 125 of gestation, 10 control and 10 NR cows were necropsied. The remaining 5 NR cows were realimented to achieve similar BW and BCS with the remaining 5 control cows by d 190 of gestation; both groups were necropsied at d 245 of gestation. Fetal weight at d 125 of gestation was 948 +/- 14 g (n = 10) for control cows; however, fetal weights of NR cows fell into 2 distinct groups: NR non-IUGR cows had fetal weights similar to control cows (974 +/- 20 g, n = 6), whereas fetal weights of NR IUGR cows were reduced (773 +/- 23 g, n = 4; P < 0.01). Fetal brain weight as a percentage of fetal weight was increased (approximately 11%; P < 0.01) in the NR IUGR fetuses compared with fetuses from the other 2 groups, which were similar. Fetal heart weight as a percentage of fetal weight also tended to be increased (approximately 10%; P = 0.08) in NR IUGR fetuses compared with control fetuses. Nutrient-restricted IUGR cows exhibited reduced (P < 0.01) cotyledonary weights compared with NR non-IUGR and control cows, which were similar (192 +/- 27 vs. 309 +/- 22, and 337 +/- 17 g, respectively). Total placentome surface area also tended to be reduced (P = 0.07) in NR IUGR cows compared with NR non-IUGR and control cows, which again were similar (685.0 +/- 45.6 vs. 828.7 +/- 37.2 and 790.7 +/- 28.9 mm(2), respectively). On d 245 of gestation, fetal weights and caruncle weight were similar for NR and control cows; cotyledonary weights, however, were reduced in NR vs. control cows (1,430 +/- 133 vs. 2,137 +/- 133 g, P < 0.01). Decreased fetal growth in NR IUGR cows on d 125 of gestation was associated with decreased cotyledonary weights and reduced placentomal surface areas. The return of NR cows to a BW and BCS similar to that of control cows through realimentation beginning on d 126 resulted in similar fetal weights of NR and control cows by d 245 of gestation. Thus, a bout of fetal IUGR may go undetected if cows undernourished during early gestation receive feed supplementation in the second half of gestation to assure normal birth weight.


Domestic Animal Endocrinology | 2011

Maternal obesity in ewes results in reduced fetal pancreatic β-cell numbers in late gestation and decreased circulating insulin concentration at term

Liren Zhang; N. M. Long; Sarah M. Hein; Yan Ma; Peter W. Nathanielsz; Stephen P. Ford

About 30% of U.S. women of reproductive age are obese, a condition linked to offspring obesity and diabetes. This study utilized an ovine model of maternal obesity in which ewes are overfed to induce obesity at conception and throughout gestation. At mid-gestation, fetuses from these obese ewes are macrosomic, hyperglycemic, and hyperinsulinemic, and they exhibited markedly increased pancreatic weight and β-cell numbers compared with fetuses of ewes fed to requirements. This study was conducted to establish fetal pancreatic phenotype and function in late gestation and at term in this ovine model. Multiparous ewes were fed a control (C, 100% National Research Council [NRC] recommendations) or obesogenic (OB, 150% NRC) diet from 60 days before conception to necropsy at day 135 of gestation or to lambing. No differences were observed in fetal size or weight on day 135 or in lamb birth weights between C and OB ewes. In contrast to our previously published results at mid-gestation, pancreatic weights (P < 0.01) and β-cell numbers (P < 0.05) of OB fetuses were markedly lower than those from C fetuses, whereas the β-cell apoptotic rate was increased (P < 0.05) in day 135 OB versus C fetuses. At birth, blood insulin concentration was lower (P < 0.05) and glucose level was higher (P < 0.05) in newborn lambs from OB versus C ewes. These data demonstrate differential impacts of maternal obesity on fetal pancreatic growth and β-cell numbers during early and late gestation. During the first half of gestation there was a marked increase in pancreatic growth, β-cell proliferation, and insulin secretion, followed by a reduction in pancreatic growth and β-cell numbers in late gestation, resulting in reduced circulating insulin at term. It is speculated that the failure of the pancreas to return to a normal cellular composition and function postnatally could result in glucose/insulin dysregulation, leading to obesity, glucose intolerance, and diabetes in postnatal life.


Reproductive Biology and Endocrinology | 2010

Different levels of overnutrition and weight gain during pregnancy have differential effects on fetal growth and organ development

Lindsey A. George; Adam B. Uthlaut; N. M. Long; Liren Zhang; Yan Ma; Derek T. Smith; Peter W. Nathanielsz; Stephen P. Ford

BackgroundNearly 50% of U.S. women of child-bearing age are overweight or obese, conditions linked to offspring obesity and diabetes.MethodsUtilizing the sheep, females were fed a highly palatable diet at two levels of overfeeding designed to induce different levels of maternal body weight increase and adiposity at conception, and from conception to midgestation. Fetal growth and organ development were then evaluated at midgestation in response to these two different levels of overfeeding. Ewes were fed to achieve: 1) normal weight gain (control, C), 2) overweight (125% of National Research Council [NRC] recommendations, OW125) or 3) obesity (150% of NRC recommendations, OB150) beginning 10 wks prior to breeding and through midgestation. Body fat % and insulin sensitivity were assessed at three points during the study: 1) diet initiation, 2) conception and 3) mid-gestation. Ewes were necropsied and fetuses recovered at mid-gestation (day 78).ResultsOB150 ewes had a higher % body fat than OW125 ewes prior to breeding (P = 0.03), but not at mid-gestation (P = 0.37). Insulin sensitivity decreased from diet initiation to mid-gestation (P = 0.04), and acute insulin response to glucose tended to be greater in OB150 ewes than C ewes (P = 0.09) and was greater than in OW125 ewes (P = 0.02). Fetal crown-rump length, thoracic and abdominal girths, and fetal perirenal fat were increased in the OW125 and OB150 versus C ewes at mid-gestation. However, only fetal heart, pancreas, and liver weights, as well as lipid content of fetal liver, were increased (P < 0.05) in OB150 ewes versus both C and OW125 ewes at midgestation.ConclusionsThese data demonstrate that different levels of overfeeding, resulting in differing levels of maternal weight gain and adiposity prior to and during pregnancy, lead to differential effects on fetal overgrowth and organ development.


Journal of Animal Science | 2012

Maternal obesity upregulates fatty acid and glucose transporters and increases expression of enzymes mediating fatty acid biosynthesis in fetal adipose tissue depots1

N. M. Long; Daniel C. Rule; M. J. Zhu; Peter W. Nathanielsz; Stephen P. Ford

Maternal nutrient restriction leads to alteration in fetal adipose tissue, and offspring from obese mothers have an increased risk of developing obesity. We hypothesized that maternal obesity increases fetal adipogenesis. Multiparous ewes (Columbia/Rambouillet cross 3 to 5 yr of age) carrying twins were assigned to a diet of 100% (Control; CON; n = 4) or 150% (Obese; OB, n = 7) of NRC maintenance requirements from 60 d before conception until necropsy on d 135 of gestation. Maternal and fetal plasma were collected and stored at -80°C for glucose and hormone analyses. Fetal measurements were made at necropsy, and perirenal, pericardial, and subcutaneous adipose tissues were collected from 7 male twin fetuses per group and snap frozen at -80°C. Protein and mRNA expression of fatty acid translocase [cluster of differentiation (CD) 36], fatty acid transport proteins (FATP) 1 and 4, insulin-sensitive glucose transporter (GLUT-4), fatty acid synthase (FASN), and acetyl-coA carboxylase (ACC) was evaluated. Fetal weight was similar, but fetal carcass weight (FCW) was reduced (P < 0.05) in OB versus CON fetuses. Pericardial and perirenal adipose tissue weights were increased (P < 0.05) as a percentage of FCW in OB versus CON fetuses, as was subcutaneous fat thickness (P < 0.001). Average adipocyte diameter was greater (P < 0.01) in the perirenal fat and the pericardial fat (P = 0.06) in OB fetuses compared with CON fetuses. Maternal plasma showed no difference (P > 0.05) in glucose or other hormones, fetal plasma glucose was similar (P = 0.42), and cortisol, IGF-1, and thyroxine were reduced (P ≤ 0.05) in OB fetuses compared with CON fetuses. Protein and mRNA expression of CD 36, FATP 1 and 4, and GLUT-4 were increased (P ≤ 0.05) in all fetal adipose depots in OB versus CON fetuses. The mRNA expression of FASN and ACC was increased (P < 0.05) in OB vs. CON fetuses in all 3 fetal adipose tissue depots. Fatty acid concentrations were increased (P = 0.01) in the perirenal depot of OB versus CON fetuses, and specific fatty acid concentrations were altered (P < 0.05) in subcutaneous and pericardial adipose tissue because of maternal obesity. In conclusion, maternal obesity was associated with increased fetal adiposity, increased fatty acid and glucose transporters, and increased expression of enzymes mediating fatty acid biosynthesis in adipose depots. These alterations, if maintained into the postnatal period, could predispose the offspring to later obesity and metabolic disease.


Nutrition Reviews | 2013

Interventions to prevent adverse fetal programming due to maternal obesity during pregnancy.

Peter W. Nathanielsz; Stephen P. Ford; N. M. Long; Claudia C Vega; Luis A. Reyes-Castro; Elena Zambrano

Maternal obesity is a global epidemic affecting both developed and developing countries. Human and animal studies indicate that maternal obesity adversely programs the development of offspring, predisposing them to chronic diseases later in life. Several mechanisms act together to produce these adverse health effects. There is a consequent need for effective interventions that can be used in the management of human pregnancy to prevent these outcomes. The present review analyzes the dietary and exercise intervention studies performed to date in both altricial and precocial animals, rats and sheep, with the aim of preventing adverse offspring outcomes. The results of these interventions present exciting opportunities to prevent, at least in part, adverse metabolic and other outcomes in obese mothers and their offspring.


Journal of Animal Science | 2010

Effects of nutrient restriction of bovine dams during early gestation on postnatal growth, carcass and organ characteristics, and gene expression in adipose tissue and muscle

N. M. Long; M. J. Prado-Cooper; C. R. Krehbiel; U. DeSilva; R. P. Wettemann

Angus x Hereford heifers (15 mo and artificially inseminated to a single sire) were used to evaluate the effect of prenatal nutritional restriction on postnatal growth and development. At d 32 of gestation, dams were stratified by BW and BCS and allotted to a low-nutrition [55% of NRC (1996) requirements, n = 10] or moderate-nutrition [100% of NRC (1996) requirements, n = 10] diet. After 83 d of feeding, dams were commingled and received a diet in excess of requirements. Dams were allowed to calve naturally, and birth weights and growth of calves were recorded. Bulls were castrated at birth. Steers (16 mo of age, 5 per treatment) received a high-concentrate diet ad libitum to a constant age (88 ± 1 wk). Steers were slaughtered and weights of the empty body and organs were recorded. Samples of organs, muscle (complexus), and perirenal and subcutaneous adipose tissue were stored at -80 degrees C, and then DNA and protein concentrations were quantified and expression of genes associated with fatty acid metabolism and glucose uptake were measured in adipose and muscle tissue. Dams had similar (P > 0.33) BW and BCS at the beginning of the experiment. At the end of restriction, dams on the low-nutrition diet weighed less (P ≤ 0.01) and had less BCS (P < 0.001) than those on the moderate-nutrition diet. Length of gestation was 274 ± 2 d for dams in the low-nutrition treatment and 278 ± 2 d (P = 0.05) for dams in the moderate-nutrition treatment. Nutrient restriction during gestation did not influence birth weight or postnatal growth of calves. Lungs and trachea of steers whose dams were fed the low-nutrition diet weighed less (P = 0.05) at slaughter than those of steers whose dams were fed the moderate-nutrition diet; weights of other organs were not influenced by treatment. Complexus muscle from steers whose dams were fed the low-nutrition diet had a greater (P = 0.04) concentration of DNA and larger muscle fiber area compared with steers whose dams were fed the moderate-nutrition diet. Abundance of mRNA for fatty acid binding protein 4, fatty acid translocase, and glucose transporter 4 was less in perirenal adipose tissue of steers whose dams were fed the low-nutrition diet compared with those whose dams were fed the moderate-nutrition diet. Nutritional restriction of dams during early gestation did not alter postnatal calf growth. However, concentrations of DNA in muscle tissue and muscle fiber area were greater in steers from dams exposed to restricted nutrient intake during early gestation.

Collaboration


Dive into the N. M. Long's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Du

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge