Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where N. Masetti is active.

Publication


Featured researches published by N. Masetti.


Astronomy and Astrophysics | 2002

Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts

L. Amati; F. Frontera; J. J. M. in 't Zand; A. Antonelli; Enrico Costa; M. Feroci; C. Guidorzi; J. Heise; N. Masetti; E. Montanari; L. Nicastro; E. Palazzi; E. Pian; L. Piro; Paolo Soffitta

We present the main results of a study of spectral and energetics properties of twelve gamma-ray bursts (GRBs) with redshift estimates. All GRBs in our sample were detected by BeppoSAX in a broad energy range (2-700 keV). From the redshift estimates and the good-quality BeppoSAX time-integrated spectra we deduce the main properties of GRBs in their cosmological rest frames. All spectra in our sample are satisfactorily represented by the Band model, with no significant soft X-ray excesses or spectral absorptions. We find a positive correlation between the estimated total (isotropic) energies in the 1-10 000 keV energy range (Erad) and redshifts z. Interestingly, more luminous GRBs are characterized also by larger peak energies Ep so f theirEF(E) spectra. Furthermore, more distant GRBs appear to be systematically harder in the X-ray band compared to GRBs with lower redshifts. We discuss how selection and data truncation eects could bias our results and give possible explanations for the correlations that we found.


Nature | 1998

An Unusual Supernova in the Error Box of the Gamma-Ray Burst of 25 April 1998

Titus J. Galama; Paul M. Vreeswijk; J. van Paradijs; C. Kouveliotou; T. Augusteijn; H. Böhnhardt; James Brewer; V. Doublier; J.-F. Gonzalez; Bruno Leibundgut; C. Lidman; Olivier R. Hainaut; Ferdinando Patat; J. Heise; J. in't Zand; Kevin C. Hurley; P. Groot; R. Strom; Paolo A. Mazzali; Koichi Iwamoto; K. Nomoto; Hideyuki Umeda; Takashi Nakamura; T. R. Young; T. Suzuki; T. Shigeyama; T. M. Koshut; Marc Kippen; C. R. Robinson; P. de Wildt

The discovery of afterglows associated with γ-ray bursts at X-ray, optical and radio wavelengths and the measurement of the redshifts of some of these events, has established that γ-ray bursts lie at extreme distances, making them the most powerful photon-emitters known in the Universe. Here we report the discovery of transient optical emission in the error box of the γ-ray burst GRB980425, the light curve of which was very different from that of previous optical afterglows associated with γ-ray bursts. The optical transient is located in a spiral arm of the galaxy ESO184-G82, which has a redshift velocity of only 2,550 km s−1 (ref. 6). Its optical spectrum and location indicate that it is a very luminous supernova, which has been identified as SN1998bw. If this supernova and GRB980425 are indeed associated, the energy radiated in γ-rays is at least four orders of magnitude less than in other γ-ray bursts, although its appearance was otherwise unremarkable: this indicates that very different mechanisms can give rise to γ-ray bursts. But independent of this association, the supernova is itself unusual, exhibiting an unusual light curve at radio wavelengths that requires that the gas emitting the radio photons be expanding relativistically,.on April 25.90915 UT with one of the Wide Field Cameras(WFCs) and the Gamma Ray Burst Monitor (GRBM) on board BeppoSAX, and with the Burst andTransient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory (CGRO).The BATSE burst profile consists of a single wide peak. The burst flux rose in ∼ 5 s to amaximum flux of (3.0± 0.3)×10


Nature | 2006

An optical supernova associated with the X-ray flash XRF 060218

E. Pian; Paolo A. Mazzali; N. Masetti; P. Ferrero; Sylvio Klose; Eliana Palazzi; Enrico Ramirez-Ruiz; S. E. Woosley; C. Kouveliotou; J. S. Deng; A. V. Filippenko; Ryan J. Foley; J. P. U. Fynbo; D. A. Kann; Weidong Li; J. Hjorth; K. Nomoto; Ferdinando Patat; Daniel Sauer; Jesper Sollerman; Paul M. Vreeswijk; E. W. Guenther; A. Levan; Paul T. O'Brien; Nial R. Tanvir; R. A. M. J. Wijers; Christophe Dumas; Olivier R. Hainaut; Diane S. Wong; Dietrich Baade

Long-duration γ-ray bursts (GRBs) are associated with type Ic supernovae that are more luminous than average and that eject material at very high velocities. Less-luminous supernovae were not hitherto known to be associated with GRBs, and therefore GRB–supernovae were thought to be rare events. Whether X-ray flashes—analogues of GRBs, but with lower luminosities and fewer γ-rays—can also be associated with supernovae, and whether they are intrinsically ‘weak’ events or typical GRBs viewed off the axis of the burst, is unclear. Here we report the optical discovery and follow-up observations of the type Ic supernova SN 2006aj associated with X-ray flash XRF 060218. Supernova 2006aj is intrinsically less luminous than the GRB–supernovae, but more luminous than many supernovae not accompanied by a GRB. The ejecta velocities derived from our spectra are intermediate between these two groups, which is consistent with the weakness of both the GRB output and the supernova radio flux. Our data, combined with radio and X-ray observations, suggest that XRF 060218 is an intrinsically weak and soft event, rather than a classical GRB observed off-axis. This extends the GRB–supernova connection to X-ray flashes and fainter supernovae, implying a common origin. Events such as XRF 060218 are probably more numerous than GRB–supernovae.


New Astronomy | 2010

VISTA Variables in the Via Lactea (VVV): The public ESO near-IR variability survey of the Milky Way

D. Minniti; P. W. Lucas; J. P. Emerson; Roberto K. Saito; M. Hempel; P. Pietrukowicz; Av Ahumada; M. V. Alonso; J. Alonso-Garcia; Ji Arias; Reba M. Bandyopadhyay; R.H. Barbá; B. Barbuy; L. R. Bedin; Eduardo Luiz Damiani Bica; J. Borissova; L. Bronfman; Giovanni Carraro; Marcio Catelan; Juan J. Claria; N. J. G. Cross; R. de Grijs; I. Dékány; Janet E. Drew; C. Fariña; C. Feinstein; E. Fernández Lajús; R.C. Gamen; D. Geisler; W. Gieren

Original article can be found at: http://www.sciencedirect.com/science/journal/13841076 Copyright Elsevier B.V.


Astrophysical Journal Supplement Series | 2009

Low-resolution Spectroscopy of Gamma-ray Burst Optical Afterglows : Biases in the Swift Sample and Characterization of the Absorbers

J. P. U. Fynbo; P. Jakobsson; Jason X. Prochaska; Daniele Malesani; Cedric Ledoux; A. de Ugarte Postigo; M. Nardini; Paul M. Vreeswijk; K. Wiersema; J. Hjorth; Jesper Sollerman; H.-. W. Chen; C. C. Thöne; G. Björnsson; J. S. Bloom; A. J. Castro-Tirado; L. Christensen; A. De Cia; Andrew S. Fruchter; J. Gorosabel; John F. Graham; Andreas O. Jaunsen; B. L. Jensen; D. A. Kann; C. Kouveliotou; Andrew J. Levan; Justyn R. Maund; N. Masetti; B. Milvang-Jensen; Eliana Palazzi

We present a sample of 77 optical afterglows (OAs) of Swift detected gamma-ray bursts (GRBs) for which spectroscopic follow-up observations have been secured. Our first objective is to measure the redshifts of the bursts. For the majority (90%) of the afterglows, the redshifts have been determined from the spectra. We provide line lists and equivalent widths (EWs) for all detected lines redward of Lyα covered by the spectra. In addition to the GRB absorption systems, these lists include line strengths for a total of 33 intervening absorption systems. We discuss to what extent the current sample of Swift bursts with OA spectroscopy is a biased subsample of all Swift detected GRBs. For that purpose we define an X-ray-selected statistical sample of Swift bursts with optimal conditions for ground-based follow-up from the period 2005 March to 2008 September; 146 bursts fulfill our sample criteria. We derive the redshift distribution for the statistical (X-ray selected) sample and conclude that less than 18% of Swift bursts can be at z > 7. We compare the high-energy properties (e.g., γ-ray (15-350 keV) fluence and duration, X-ray flux, and excess absorption) for three subsamples of bursts in the statistical sample: (1) bursts with redshifts measured from OA spectroscopy; (2) bursts with detected optical and/or near-IR afterglow, but no afterglow-based redshift; and (3) bursts with no detection of the OA. The bursts in group (1) have slightly higher γ-ray fluences and higher X-ray fluxes and significantly less excess X-ray absorption than bursts in the other two groups. In addition, the fractions of dark bursts, defined as bursts with an optical to X-ray slope βOX 39% in group (3). For the full sample, the dark burst fraction is constrained to be in the range 25%-42%. From this we conclude that the sample of GRBs with OA spectroscopy is not representative for all Swift bursts, most likely due to a bias against the most dusty sight lines. This should be taken into account when determining, e.g., the redshift or metallicity distribution of GRBs and when using GRBs as a probe of star formation. Finally, we characterize GRB absorption systems as a class and compare them to QSO absorption systems, in particular the damped Lyα absorbers (DLAs). On average GRB absorbers are characterized by significantly stronger EWs for H I as well as for both low and high ionization metal lines than what is seen in intervening QSO absorbers. However, the distribution of line strengths is very broad and several GRB absorbers have lines with EWs well within the range spanned by QSO-DLAs. Based on the 33 z > 2 bursts in the sample, we place a 95% confidence upper limit of 7.5% on the mean escape fraction of ionizing photons from star-forming galaxies. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under programs 275.D-5022 (PI: Chincarini), 075.D-0270 (PI: Fynbo), 077.D-0661 (PI: Vreeswijk), 077.D-0805 (PI: Tagliaferri), 177.A-0591 (PI: Hjorth), 078.D-0416 (PI: Vreeswijk), 079.D-0429 (PI: Vreeswijk), 080.D-0526 (PI: Vreeswijk), 081.A-0135 (PI: Greiner), 281.D-5002 (PI: Della Valle), and 081.A-0856 (PI: Vreeswijk). Also based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Some of the data obtained herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck foundation.


Nature | 2009

GRB 090423 at a redshift of z ≈ 8.1

R. Salvaterra; M. Della Valle; Sergio Campana; Guido Chincarini; S. Covino; P. D’Avanzo; Alberto Fernandez-Soto; C. Guidorzi; F. Mannucci; Raffaella Margutti; C. C. Thöne; L. A. Antonelli; S. D. Barthelmy; M. De Pasquale; V. D’Elia; F. Fiore; Dino Fugazza; L. K. Hunt; E. Maiorano; S. Marinoni; F. E. Marshall; Emilio Molinari; John A. Nousek; E. Pian; Judith Lea Racusin; L. Stella; L. Amati; G. Andreuzzi; G. Cusumano; E. E. Fenimore

Gamma-ray bursts (GRBs) are produced by rare types of massive stellar explosion. Their rapidly fading afterglows are often bright enough at optical wavelengths that they are detectable at cosmological distances. Hitherto, the highest known redshift for a GRB was z = 6.7 (ref. 1), for GRB 080913, and for a galaxy was z = 6.96 (ref. 2). Here we report observations of GRB 090423 and the near-infrared spectroscopic measurement of its redshift, z = . This burst happened when the Universe was only about 4 per cent of its current age. Its properties are similar to those of GRBs observed at low/intermediate redshifts, suggesting that the mechanisms and progenitors that gave rise to this burst about 600,000,000 years after the Big Bang are not markedly different from those producing GRBs about 10,000,000,000 years later.


Astronomy and Astrophysics | 2007

REM observations of GRB 060418 and GRB 060607A: the onset of the afterglow and the initial fireball Lorentz factor determination

Emilio Molinari; S. D. Vergani; Daniele Malesani; S. Covino; Paolo D'Avanzo; Guido Chincarini; Filippo Maria Zerbi; L. A. Antonelli; Paolo Conconi; Vincenzo Testa; G. Tosti; Fabrizio Vitali; Francesco D'Alessio; G. Malaspina; L. Nicastro; Eliana Palazzi; Dafne Guetta; Sergio Campana; Paolo Goldoni; N. Masetti; E. J. A. Meurs; Alessandro Monfardini; Laura Norci; E. Pian; S. Piranomonte; D. Rizzuto; M. Stefanon; L. Stella; G. Tagliaferri; P. Ward

Context. Gamma-ray burst (GRB) emission is believed to originate in highly relativistic fireballs. Aims. Currently, only lower limits were securely set to the initia l fireball Lorentz factor 0. We aim to provide a direct measure of 0. Methods. The early-time afterglow light curve carries information about 0, which determines the time of the afterglow peak. We have obtained early observations of the near-infrared afte rglows of GRB 060418 and GRB 060607A with the REM robotic telescope. Results. For both events, the afterglow peak could be clearly singled out, allowing a firm determination of the fireball Lorentz of 0∼ 400, fully confirming the highly relativistic nature of GRB fi reballs. The deceleration radius was inferred to be Rdec≈ 10 17 cm. This is much larger than the internal shocks radius (believed to power the prompt emission), thus providing further evidence for a different origin of the prompt and afterglow stages of the GRB.E. Molinari, S.D. Vergani , D. Malesani , S. Covino, P. D’Avanzo, G. Chincarini , F.M. Zerbi, L.A. Antonelli, P. Conconi , V. Testa, G. Tosti , F. Vitali, F. D’Alessio, G. Malaspina, L. Nicastro, E. Palazzi , D. Guetta, S. Campana , P. Goldoni , N. Masetti , E.J.A. Meurs, A. Monfardini, L. Norci, E. Pian, S. Piranomonte , D. Rizzuto, M. Stefanon, L. Stella, G. Tagliaferri , P.A. Ward, G. Ihle, L. Gonzalez, A. Pizarro, P. Sinclair, J. Valenzuela 15


Astronomy and Astrophysics | 2004

The host of GRB 030323 at z=3.372: A very high column density DLA system with a low metallicity

Paul M. Vreeswijk; Sara L. Ellison; Cedric Ledoux; R. A. M. J. Wijers; Johan Peter Uldall Fynbo; P. Møller; Arne A. Henden; J. Hjorth; Gianluca Masi; E. Rol; B. L. Jensen; Nial R. Tanvir; Andrew J. Levan; J. M. Castro Cerón; J. Gorosabel; A. J. Castro-Tirado; Andrew S. Fruchter; C. Kouveliotou; I. Burud; James E. Rhoads; N. Masetti; E. Palazzi; E. Pian; H. Pedersen; L. Kaper; A. C. Gilmore; P. M. Kilmartin; J. Buckle; Marc S. Seigar; Dieter H. Hartmann

We present photometry and spectroscopy of the afterglow of GRB 030323. VLT spectra of the afterglow show damped Lyα (DLA) absorption and low- and high-ionization lines at a redshift z = 3.3718 ± 0.0005. The inferred neutral hy- drogen column density, log N(Hi) = 21.90 ± 0.07, is larger than any (GRB- or QSO-) DLA H  column density inferred directly from Lyα in absorption. From the afterglow photometry, we derive a conservative upper limit to the host-galaxy extinction: AV < 0.5 mag. The iron abundance is (Fe/H) = −1.47 ± 0.11, while the metallicity of the gas as measured from sulphur is (S/H) = −1.26 ± 0.20. We derive an upper limit on the H2 molecular fraction of 2N(H2)/(2N(H2) + N(Hi)) < 10 −6 .I n the Lyα trough, a Lyα emission line is detected, which corresponds to a star-formation rate (not corrected for dust extinction) of roughly 1 Myr −1 . All these results are consistent with the host galaxy of GRB 030323 consisting of a low metallicity gas with a low dust content. We detect fine-structure lines of silicon, Si *, which have never been clearly detected in QSO-DLAs; this suggests that these lines are produced in the vicinity of the GRB explosion site. Under the assumption that these fine-structure levels are populated by particle collisions, we estimate the H  volume density to be nHi = 10 2 −10 4 cm −3 .H ST/ACS imaging 4 months after the burst shows an extended AB(F606W) = 28.0 ± 0.3 mag object at a distance of 0.


Astronomy and Astrophysics | 2010

The Palermo Swift-BAT hard X-ray catalogue - II. Results after 39 months of sky survey

G. Cusumano; V. La Parola; A. Segreto; Vanessa Mangano; C. Ferrigno; A. Maselli; Patrizia Romano; T. Mineo; Boris Sbarufatti; Sergio Campana; Guido Chincarini; P. Giommi; N. Masetti; A. Moretti; G. Tagliaferri

Aims. We present the Palermo Swift-BAT hard X-ray catalogue obtained from the analysis of data acquired during the first 39 months of the Swift mission. Methods. We developed a dedicated software to perform the data reduction, mosaicking, and source detection of the BAT survey data. We analyzed the BAT dataset in three energy bands (14−150 keV, 14−30 keV, 14−70 keV), obtaining a list of 962 detections above a significance threshold of 4.8 standard deviations. The identification of the source counterparts was pursued using three strategies: cross-correlation with published hard X-ray catalogues, analysis of field observations of soft X-ray instruments, and cross-correlation with SIMBAD databases. Results. The survey covers 90% of the sky down to a flux limit of 2.5 × 10 −11 erg cm −2 s −1 and 50% of the sky down to a flux limit of 1.8 × 10 −11 erg cm −2 s −1 in the 14−150 keV band. We derived a catalogue of 754 identified sources, of which ∼69% are extragalactic, ∼27% are Galactic objects, and ∼4% are already known X-ray or gamma ray emitters, whose nature has yet to be determined. The integrated flux of the extragalactic sample is ∼1% of the cosmic X-ray background in the 14−150 keV range.


Scopus | 2004

The host of GRB 030323 at z = 3.372: A very high column density DLA system with a low metallicity

Paul M. Vreeswijk; Sara L. Ellison; C. Ledoux; R.A.M.J. Wijers; E. Rol; L. Kaper; Van Den Heuvel Epj; J. P. U. Fynbo; J. Hjorth; B. L. Jensen; H. Pedersen; P. Møller; Arne A. Henden; Gianluca Masi; Nial R. Tanvir; Andrew J. Levan; Castro Cerón Jm; J. Gorosabel; Andrew S. Fruchter; I. Burud; James E. Rhoads; Alberto J. Castro-Tirado; C. Kouveliotou; N. Masetti; E. Palazzi; E. Pian; A. C. Gilmore; P. M. Kilmartin; J. Buckle; Marc S. Seigar

We present photometry and spectroscopy of the afterglow of GRB 030323. VLT spectra of the afterglow show damped Lyα (DLA) absorption and low- and high-ionization lines at a redshift z = 3.3718 ± 0.0005. The inferred neutral hy- drogen column density, log N(Hi) = 21.90 ± 0.07, is larger than any (GRB- or QSO-) DLA H  column density inferred directly from Lyα in absorption. From the afterglow photometry, we derive a conservative upper limit to the host-galaxy extinction: AV < 0.5 mag. The iron abundance is (Fe/H) = −1.47 ± 0.11, while the metallicity of the gas as measured from sulphur is (S/H) = −1.26 ± 0.20. We derive an upper limit on the H2 molecular fraction of 2N(H2)/(2N(H2) + N(Hi)) < 10 −6 .I n the Lyα trough, a Lyα emission line is detected, which corresponds to a star-formation rate (not corrected for dust extinction) of roughly 1 Myr −1 . All these results are consistent with the host galaxy of GRB 030323 consisting of a low metallicity gas with a low dust content. We detect fine-structure lines of silicon, Si *, which have never been clearly detected in QSO-DLAs; this suggests that these lines are produced in the vicinity of the GRB explosion site. Under the assumption that these fine-structure levels are populated by particle collisions, we estimate the H  volume density to be nHi = 10 2 −10 4 cm −3 .H ST/ACS imaging 4 months after the burst shows an extended AB(F606W) = 28.0 ± 0.3 mag object at a distance of 0.

Collaboration


Dive into the N. Masetti's collaboration.

Top Co-Authors

Avatar

E. Palazzi

Cork Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

E. Pian

Scuola Normale Superiore di Pisa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Kouveliotou

Universities Space Research Association

View shared research outputs
Top Co-Authors

Avatar

J. Hjorth

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Paul M. Vreeswijk

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. J. Castro-Tirado

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge