N. N. Efimov
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N. N. Efimov.
Journal of Physical Chemistry Letters | 2016
Alexander A. Pavlov; Yulia V. Nelyubina; Svitlana V. Kats; Larysa V. Penkova; N. N. Efimov; Artem O. Dmitrienko; Anna V. Vologzhanina; Alexander S. Belov; Yan Z. Voloshin; Valentin V. Novikov
A large barrier to magnetization reversal, a signature of a good single-molecule magnet (SMM), strongly depends on the structural environment of a paramagnetic metal ion. In a crystalline state, where SMM properties are usually measured, this environment is influenced by crystal packing, which may be different for the same chemical compound, as in polymorphs. Here we show that polymorphism can dramatically change the magnetic behavior of an SMM even with a very rigid coordination geometry. For a cobalt(II) clathrochelate, it results in an increase of the effective barrier from 109 to 180 cm-1, the latter value being the largest one reported to date for cobalt-based SMMs. Our finding thus highlights the importance of identifying possible polymorphic phases in search of new, even more efficient SMMs.
Chemistry: A European Journal | 2015
Alexey N. Bilyachenko; Alexey I. Yalymov; Alexander A. Korlyukov; Jérôme Long; Joulia Larionova; Yannick Guari; Yan V. Zubavichus; A. L. Trigub; Elena S. Shubina; Igor L. Eremenko; N. N. Efimov; Mikhail M. Levitsky
A heterometallic phenylsilsesquioxane [(PhSiO1,5)22(CoO)3(NaO0.5)6]⋅(EtOH)6⋅(H2O) 1 cage architecture of Co(II) ions in a triangular topology exhibits a slow dynamic behavior in its magnetization, induced by the freezing of the spins of individual molecules.
Russian Journal of Coordination Chemistry | 2014
P. S. Koroteev; Zh. V. Dobrokhotova; N. N. Efimov; A. B. Ilyukhin; V. M. Novotortsev
New ferrocenecarboxylates of rare-earth metals, [Ln2(μ-O,η2-OOCFc)2(μ2-O,O′-OOCFc)2(η2-NO3)2(DMSO)4] (Ln = Gd (I), Tb (II), and Y (III)) and [Gd2(μ-O,η2-OOCFc)2(η2-OOCFc)4(DMSO)2(H2O)2] · 2DMSO · 2CH2Cl2 (IV), are synthesized and characterized by X-ray diffraction analysis. Unlike all earlier known ferrocenecarboxylates of rare-earth metals, in isostructural compounds I–III the Ln atoms are linked by four bridging carboxyl residues, two of which are chelate-bridging (the coordination number of Ln is 9). Binuclear structure IV is formed by two chelate-bridging carboxylate ligands (the coordination number of Gd is 9). Weak antiferromagnetic and weak ferromagnetic interactions between the Gd atoms are observed in complexes I and IV, respectively. The thermal decomposition of the synthesized compounds is studied by differential scanning calorimetry and thermogravimetry. According to the X-ray diffraction data, the final thermolysis products of the complexes in air are garnets Ln3Fe5O12.
Russian Journal of Inorganic Chemistry | 2013
A. E. Dziova; V. V. Avdeeva; I. N. Polyakova; E. A. Malinina; A. V. Rotov; N. N. Efimov; E. A. Ugolkova; V. V. Minin; N. T. Kuznetsov
A redox reaction that occurs in the [Cu2B10H10]/Phen system in CH3CN/DMSO and CH3CN/DMF in air yields a Cu(II) binuclear complex, [(Phen)2Cu(CO3)Cu(Phen)2]2+. The [Cu2(Phen)4(μ-CO3)]B10H10 · 2.5DMSO · 2H2O (I) and [Cu2(Phen)4(μ-CO3)]B10H10 · 4DMF (II) compounds have been isolated and studied by X-ray crystallography at 150 K and EPR at 295 K. Their magnetic properties have been studied in the range 300–2 K. In the cations of both compounds, the bridging CO32− group is bidentately coordinated to two Cu atoms. The cations in I and II have different spatial orientations of the Cu-O bonds: anti-syn and anti-anti, respectively. Compound I has weak magnetic interactions caused by a short Cu…Cu distance (4.441 Å) in the dimer. No exchange coupling is observed in II.
Russian Chemical Bulletin | 2013
E. S. Bazhina; G. G. Aleksandrov; N. N. Efimov; E. A. Ugolkova; V. V. Minin; A. A. Sidorov; V. M. Novotortsev; I. L. Eremenko
The reaction of an aqueous solution of vanadyl sulfate VOSO4·3H2O, butylmalonic acid (H2Bumal = C4H10(COOH)2), and lithium carbonate at pH ∼4–5 gave crystals of the complex Li4(VO)2(Bumal)4(H2O)8]·H2O (1). The structure of complex 1 was established by X-ray diffraction analysis. The molecule of complex 1 consists of two mononuclear bischelate dianionic units {VO(Bumal)2(H2O)} linked by four lithium ions to form the hexanuclear heterometallic {V2Li4} structure. The crystals and an ethanolic solution of compound 1 were studied by ESR spectroscopy.
Russian Chemical Bulletin | 2012
N. V. Zauzolkova; Ekaterina Zorina; A. A. Sidorov; G. G. Aleksandrov; Anatoly S. Lermontov; V. V. Minin; A. V. Rotov; E. A. Ugolkova; N. N. Efimov; M. A. Kiskin; V. M. Novotortsev; I. L. Eremenko
A reaction of (HPiv)2Cu2(Piv)4 with dimethylmalonic acid dipotassium salt (K2Me2mal) leads to the formation of a cage coordination polymer {(μ-H2O)6K8[(μ-H2O)Cu-(μ3,κ2-Me2mal)(μ6,κ2-Me2mal)]2[Cu2(μ5,κ2-Me2mal)2(μ5,κ2-Me2mal)2]}n (1). It was found that when 1 reacted with CdSO4·8H2O in a mixture of EtOH-H2O (3: 1), the potassium ions in 1 were displaced with cadmium(ii) ions with the formation of a heterometallic 1D-polymer [(κ1-H2O)4CdCu(μ,κ2-Me2mal)2]n (2). Compounds 1 and 2 were characterized by X-ray crystallography and ESR spectroscopy.
Russian Chemical Bulletin | 2012
E. S. Bazhina; M. E. Nikiforova; G. G. Aleksandrov; N. N. Efimov; M. A. Kiskin; E. A. Ugolkova; V. V. Minin; A. A. Sidorov; V. M. Novotortsev; I. L. Eremenko
A reaction of vanadyl sulfate VOSO4·3H2O with dimethylmalonic acid strontium salt led to the coordination polymer {Sr(H2O)8[VO(Me2mal)2]}n (1, Me2mal is the dimethylmalonic acid dianion), in which the carboxylate dianions did not form chelate metallocycles with the vanadyl ions. The complex was studied by ESR spectroscopy. The compound 1 exhibited weak spin-spin exchange interactions of ferromagnetic type between the VIV atoms.
Inorganic Chemistry | 2017
Alexander A. Pavlov; Svetlana A. Savkina; Alexander S. Belov; Yulia V. Nelyubina; N. N. Efimov; Yan Z. Voloshin; Valentin V. Novikov
High magnetic anisotropy is a key property of paramagnetic shift tags, which are mostly studied by NMR spectroscopy, and of single molecule magnets, for which magnetometry is usually used. We successfully employed both these methods in analyzing magnetic properties of a series of transition metal complexes, the so-called clathrochelates. A cobalt complex was found to be both a promising paramagnetic shift tag and a single molecule magnet because of it having large axial magnetic susceptibility tensor anisotropy at room temperature (22.5 × 10-32 m3 mol-1) and a high effective barrier to magnetization reversal (up to 70.5 cm-1). The origin of this large magnetic anisotropy is a negative value of zero-field splitting energy that reaches -86 cm-1 according to magnetometry and NMR measurements.
Russian Journal of Inorganic Chemistry | 2015
A. V. Pulya; I. I. Seifullina; L. S. Skorokhod; N. N. Efimov; E. A. Ugolkova; V. V. Minin
Complexes of MnCl2 with 2-(7-bromo-2-oxo-5-phenyl-3H-1,4-benzdiazepin-1-yl)acetohydrazide (Hydr) and its condensation product with pyruvic acid (HPv) of composition [Mn(Hydr)2Cl2] (I) and [Mn(HydrHPv)2Cl2] (II) were prepared. The complexes were characterized by conductivity and magnetic susceptibility measurements, IR and ESR spectroscopy.
Russian Journal of Coordination Chemistry | 2015
P. S. Koroteev; N. N. Efimov; Zh. V. Dobrokhotova; A. B. Ilyukhin; A. V. Gavrikov; V. M. Novotortsev
New binuclear cymantrenecarboxylate complexes of rare-earth metals, [Ln2(μ-O,η2-O2CCym)2(μ2-O,O′-O2CCym)2(η2-O2CCym)2(DMSO)4] (Ln = Tb (I), Dy (II); Cym = (η5-C5H4)Mn(CO)3) and [Ln2(μ2-O,O′-O2CCym)4(η2-NO3)2(DMSO)4] (Ln = Tb (III), Dy (IV)), are synthesized and characterized by X-ray diffraction analysis. The carboxylate clusters containing the Mn2+ ion, which is formed due to the destruction of the cymantrenenecarboxylate anion, [Tb4(μ3-OH)4(μ2-O,O′-O2CCym)6(H2O)3(THF)4][MnCl4] · 4CH2Cl2 · 6THF (V) with the cubane-like structure, and [Er2Mn(μ2-O2CCym)6(η2-O2CCym)2((MeO)3PO)4] · 2MePh (VI) with linear structure, are also obtained. The magnetism of complexes I, II, V, and VI is studied in a direct magnetic field. The magnetic properties of complexes II and VI are studied in direct and alternating magnetic fields. Complex II exhibits the properties of a single-molecule magnet. The thermal decomposition of complexes I–IV is studied by differential scanning calorimetry and thermogravimetric analysis. According to the X-ray diffraction analysis data, the final thermolysis products of complexes III and IV in air are multiferroics LnMn2O5.