N. N. Vorobyeva
Moscow State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N. N. Vorobyeva.
FEBS Letters | 1994
V.Yu. Oganessyan; S. A. Kurilova; N. N. Vorobyeva; T. I. Nazarova; A.N. Popov; A.A. Lebedev; Svetlana M. Avaeva; Emil H. Harutyunyan
An E. coli inorganic pyrophosphatase overproducer and a method for a large‐scale production of the homogeneous enzyme are described. The inorganic pyrophosphatase was crystallized in the form containing one subunit of a homohexameric molecule per asymmetric unit: space group R32, a = 110.4 Å, c = 76.8 Å. The electron density map to 2.5 Å resolution phased with Eu‐ and Hg‐derivatives (figure of merit, = 0.51) was improved by the solvent flattening procedure ( = 0.77). The course of the polypeptide chain and the secondary structure elements, intersubunit contacts and positions of the active sites were characterized. Homology with S. cerevisiae inorganic pyrophosphatase structure was found.
FEBS Letters | 1997
Svetlana M. Avaeva; S. A. Kurilova; Tatjana I. Nazarova; E. V. Rodina; N. N. Vorobyeva; Vera Sklyankina; Olga Grigorjeva; Emil H. Harutyunyan; Vaheh Oganessyan; Keith S. Wilson; Zbygnew Dauter; Robert Huber; Timothy Mather
The three‐dimensional structure of inorganic pyrophosphatase from Escherichia coli complexed with sulfate was determined at 2.2 Å resolution using Pattersons search technique and refined to an R‐factor of 19.2%. Sulfate may be regarded as a structural analog of phosphate, the product of the enzyme reaction, and as a structural analog of methyl phosphate, the irreversible inhibitor. Sulfate binds to the pyrophosphatase active site cavity as does phosphate and this diminishes molecular symmetry, converting the homohexamer structure form (α3)2 into α3′α3″. The asymmetry of the molecule is manifested in displacements of protein functional groups and some parts of the polypeptide chain and reflects the interaction of subunits and their cooperation. The significance of re‐arrangements for pyrophosphatase function is discussed.
FEBS Letters | 1996
Svetlana M. Avaeva; E. V. Rodina; S. A. Kurilova; Tatjana I. Nazarova; N. N. Vorobyeva
Asp‐42 located in the active site of E. coli inorganic pyrophosphatase (PPase) has been substituted by Asn by site‐directed mutagenesis. This resulted in a 3‐fold increase in hydrolytic activity measured under optimal conditions, a 15.5‐fold increase in the K m value and retention of the pK values of groups for enzyme and enzyme‐substrate complex. The active site of the enzyme contains 4 metal binding centers (I–IV) [Harutyunyan et al. (1996) Eur. J. Biochem., in press]. Asp‐42 is located near centers II and IV. The D42N replacement had no effect on Mg2+ binding with center II. At the same time, occupation of center IV eliminates the inhibition of inorganic pyrophosphate hydrolysis by high Mg2+ concentrations typical of wild‐type PPase. It is proposed that the increase in activity and decrease in affinity for substrate of the D42N PPase results from changes in Mg2+ binding to center IV. The Mg2+ binding centers of E. coli PPase are lined up in filling order.
Iubmb Life | 2003
Tatyana S. Sitnik; Julia P. Vainonen; E. V. Rodina; T. I. Nazarova; S. A. Kurilova; N. N. Vorobyeva; Svetlana M. Avaeva
Escherichia coli inorganic pyrophosphatase (E‐PPase) is a homohexamer formed from two trimers related by a two‐fold axis. The residue Asp26 participates in intertrimeric contacts. Kinetics of MgPPi hydrolysis by a mutant Asp26Ala E‐PPase is found to not obey Michaelis‐Menten equation but can be described within the scheme of activation of hydrolysis by a free PPi binding at an effectory subsite. Existence of such a subsite is confirmed by the finding that the free form of methylenediphosphonate activates MgPPi hydrolysis though its magnesium complex is a competitive inhibitor. The Asp26Ala variant is the first example of hexameric E‐PPase demonstrated to have an activatory subsite. IUBMB Life, 55: 37‐41, 2003
Biochemistry | 2005
Ju. P. Vainonen; N. N. Vorobyeva; E. V. Rodina; T. I. Nazarova; S. A. Kurilova; Ju. S. Skoblov; Svetlana M. Avaeva
Soluble inorganic pyrophosphatase from Escherichia coli (E-PPase) is a hexamer forming under acidic conditions the active trimers. We have earlier found that the hydrolysis of a substrate (MgPPi) by the trimers as well as a mutant E-PPase Asp26Ala did not obey the Michaelis-Menten equation. To explain this fact, a model has been proposed implying the existence of, aside from an active site, an effector site that can bind PPi and thus accelerate MgPPi hydrolysis. In this paper, we demonstrate that the noncompetitive activation of MgPPi hydrolysis by metal-free PPi can also explain kinetic features of hexameric forms of both the native enzyme and the specially obtained mutant E-PPase with a substituted residue Glu145 in a flexible loop 144-149. Aside from PPi, its non-hydrolyzable analog methylene diphosphonate can also occupy the effector site resulting in the acceleration of the substrate hydrolysis. Our finding that two moles of [32P]PPi can bind with each enzyme subunit is direct evidence for the existence of the effector site in the native E-PPase.
Biochemistry | 2008
E. V. Rodina; L. P. Vainonen; N. N. Vorobyeva; S. A. Kurilova; T. S. Sitnik; T. I. Nazarova
Inorganic pyrophosphatase from Mycobacterium tuberculosis (Mt-PPase) is one of the possible targets for the rational design of anti-tuberculosis agents. In this paper, functional properties of this enzyme are characterized in the presence of the most effective activators—Mg2+ and Mn2+. Dissociation constants of Mt-PPase complexed with Mg2+ or Mn2+ are essentially similar to those of Escherichia coli PPase. Stability of a hexameric form of Mt-PPase has been characterized as a function of pH both for the metal-free enzyme and for Mg2+-or Mn2+-enzyme. Hexameric metal-free Mt-PPase has been shown to dissociate, forming monomers at pH below 4 or trimers at pH from 8 to 10. Mg2+ or Mn2+ shift the hexamer-trimer equilibrium found for the apo-Mt-PPase at pH 8–10 toward the hexameric form by stabilizing intertrimeric contacts. The pKa values have been determined for groups that control the observed hexamer-monomer (pKa 5.4), hexamer-trimer (pKa 7.5), and trimer-monomer (pKa 9.8) transitions. Our results demonstrate that due to the non-conservative amino acid residues His21 and His86 in the active site of Mt-PPase, substrate specificity of this enzyme, in contrast to other typical PPases, does not depend on the nature of the metal cofactor.
FEBS Letters | 1997
Svetlana M. Avaeva; S. A. Kurilova; Tatjana I. Nazarova; E. V. Rodina; N. N. Vorobyeva; Vera Sklyankina; Olga Grigorjeva; Emil H. Harutyunyan; Vaheh Oganessyan; Keith S. Wilson; Zbygnew Dauter; Robert Huber; Timothy Mather
The three‐dimensional structure of inorganic pyrophosphatase from Escherichia coli complexed with sulfate was determined at 2.2 Å resolution using Pattersons search technique and refined to an R‐factor of 19.2%. Sulfate may be regarded as a structural analog of phosphate, the product of the enzyme reaction, and as a structural analog of methyl phosphate, the irreversible inhibitor. Sulfate binds to the pyrophosphatase active site cavity as does phosphate and this diminishes molecular symmetry, converting the homohexamer structure form (α3)2 into α3′α3″. The asymmetry of the molecule is manifested in displacements of protein functional groups and some parts of the polypeptide chain and reflects the interaction of subunits and their cooperation. The significance of re‐arrangements for pyrophosphatase function is discussed.
Biochemistry | 2007
E. V. Rodina; N. N. Vorobyeva; S. A. Kurilova; M. S. Belenikin; Natalia V. Fedorova; T. I. Nazarova
The interaction of Escherichia coli inorganic pyrophosphatase (E-PPase) with effector ATP has been studied. The E-PPase has been chemically modified with the dialdehyde derivative of ATP. It has been established that in the experiment only one molecule of effector ATP is bound to each subunit of the hexameric enzyme. Tryptic digestion of the adenylated protein followed by isolation of a modified peptide by HPLC and its mass-spectrometric identification has showed that it is an amino group of Lys146 that undergoes modification. Molecular docking of ATP to E-PPase indicates that the binding site for effector ATP is located in a cluster of positively charged amino acid residues proposed earlier on the basis of site-directed mutagenesis to participate in binding of effector pyrophosphate. Molecular docking also reveals several other amino acid residues probably involved in the interaction with effectors.
Biochemistry | 2007
E. V. Rodina; N. N. Vorobyeva; S. A. Kurilova; T. S. Sitnik; T. I. Nazarova
It has been shown that PPi, methylenediphosphonate, and ATP act as effectors of Escherichia coli inorganic pyrophosphatase (E-PPase), and that they compete for binding at the allosteric regulatory site. On the basis of chemical modification and computer modeling of a structure of the enzyme-ATP complex, a number of amino acid residues presumably involved in binding effectors has been revealed. Mutant variants Lys112Gln, Lys112Gln/Lys148Gln, and Lys112Gln/Lys115Ala of E-PPase have been obtained, as well as a modified variant of wild type E-PPase (Adwt PPase) with a derivative of ATP chemically attached to the amino group of Lys146. Kinetic properties of these variants have been investigated and compared to the earlier described variants Lys115Ala, Arg43Gln, and Lys148Gln. Analysis of the data confirms the proposed location of an effector binding site in a cluster of positively charged amino acid residues including the side chains of Arg43, Lys146 (subunit A), Lys112, and Lys115 (subunit B). Lys112 is supposed to play a key role in forming contacts with the phosphate groups of the three studied effectors.
Biochemistry | 2005
V. M. Moiseev; E. V. Rodina; S. A. Kurilova; N. N. Vorobyeva; T. I. Nazarova; Svetlana M. Avaeva
Escherichia coli inorganic pyrophosphatase (PPase) is a one-domain globular enzyme characterized by its ability to easily undergo minor structure rearrangements involving flexible segments of the polypeptide chain. To elucidate a possible role of these segments in catalysis, catalytic properties of mutant variants of E. coli PPase Gly100Ala and Gly147Val with substitutions in the conservative loops II and III have been studied. The main result of the mutations was a sharp decrease in the rates of conformational changes required for binding of activating Mg2+ ions, whereas affinity of the enzyme for Mg2+ was not affected. The pH-independent parameters of MgPPi hydrolysis, kcat and kcat/Km, have been determined for the mutant PPases. The values of kcat for Gly100Ala and Gly147Val variants were 4 and 25%, respectively, of the value for the native enzyme. Parameter kcat/Km for both mutants was two orders of magnitude lower. Mutation Gly147Val increased pH-independent Km value about tenfold. The study of synthesis of pyrophosphate in the active sites of the mutant PPases has shown that the maximal level of synthesized pyrophosphate was in the case of Gly100Ala twofold, and in the case of Gly147Val fivefold, higher than for the native enzyme. The results reported in this paper demonstrate that the flexibility of the loops where the residues Gly100 and Gly147 are located is necessary at the stages of substrate binding and product release. In the case of Gly100Ala PPase, significant impairment of affinity of enzyme effector site for PPi was also found.