Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where N. P. Gibson is active.

Publication


Featured researches published by N. P. Gibson.


Monthly Notices of the Royal Astronomical Society | 2011

Hubble Space Telescope transmission spectroscopy of the exoplanet HD 189733b: high-altitude atmospheric haze in the optical and near-ultraviolet with STIS

David K. Sing; F. Pont; S. Aigrain; David Charbonneau; J.-M. Desert; N. P. Gibson; R. L. Gilliland; Wolfgang Hayek; Gregory W. Henry; Heather A. Knutson; A. Lecavelier des Etangs; Tsevi Mazeh; Avi Shporer

We present Hubble Space Telescope (HST) optical and near-ultraviolet transmission spectra of the transiting hot Jupiter HD 189733b, taken with the repaired Space Telescope Imaging Spectrograph (STIS) instrument. The resulting spectra cover the range 2900–5700 A and reach per exposure signal-to-noise ratio levels greater than 11 000 within a 500-A bandwidth. We used time series spectra obtained during two transit events to determine the wavelength dependence of the planetary radius and measure the exoplanet’s atmospheric transmission spectrum for the first time over this wavelength range. Our measurements, in conjunction with existing HST spectra, now provide a broad-band transmission spectrum covering the full optical regime. The STIS data also show unambiguous evidence of a large occulted stellar spot during one of our transit events, which we use to place constraints on the characteristics of the K dwarf’s stellar spots, estimating spot temperatures around T eff ∼ 4250 K. With contemporaneous ground-based photometric monitoring of the stellar variability, we also measure the correlation between the stellar activity level and transit-measured planet-to-star radius contrast, which is in good agreement with predictions. We find a planetary transmission spectrum in good agreement with that of Rayleigh scattering from a high-altitude atmospheric haze as previously found from HST Advanced Camera for Surveys. The high-altitude haze is now found to cover the entire optical regime and is well characterized by Rayleigh scattering. These findings suggest that haze may be a globally dominant atmospheric feature of the planet which would result in a high optical albedo at shorter optical wavelengths.


The Astrophysical Journal | 2009

WASP-12b: The Hottest Transiting Extrasolar Planet Yet Discovered

L. Hebb; Andrew Collier-Cameron; B. Loeillet; Don Pollacco; G. Hébrard; R. A. Street; F. Bouchy; H. C. Stempels; C. Moutou; E. K. Simpson; S. Udry; Y. C. Joshi; Richard G. West; I. Skillen; D. M. Wilson; I. McDonald; N. P. Gibson; S. Aigrain; D. R. Anderson; Chris R. Benn; D. J. Christian; B. Enoch; C. A. Haswell; C. Hellier; K. Horne; J. Irwin; T. A. Lister; P. F. L. Maxted; Michel Mayor; A. J. Norton

We report on the discovery of WASP-12b, a new transiting extrasolar planet with R pl = 1.79+0.09 –0.09 RJ and M pl = 1.41+0.10 –0.10 M J. The planet and host star properties were derived from a Monte Carlo Markov Chain analysis of the transit photometry and radial velocity data. Furthermore, by comparing the stellar spectrum with theoretical spectra and stellar evolution models, we determined that the host star is a supersolar metallicity ([M/H] = 0.3+0.05 –0.15), late-F (T eff = 6300+200 –100 K) star which is evolving off the zero-age main sequence. The planet has an equilibrium temperature of T eq = 2516 K caused by its very short period orbit (P = 1.09 days) around the hot, twelfth magnitude host star. WASP-12b has the largest radius of any transiting planet yet detected. It is also the most heavily irradiated and the shortest period planet in the literature.


Nature | 2016

A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion

David K. Sing; Jonathan J. Fortney; N. Nikolov; Hannah R. Wakeford; Tiffany Kataria; T. Evans; Suzanne Aigrain; G. E. Ballester; Adam Burrows; Drake Deming; Jean-Michel Desert; N. P. Gibson; Gregory W. Henry; Catherine M. Huitson; Heather A. Knutson; Alain Lecavelier des Etangs; F. Pont; A. Vidal-Madjar; Michael H. Williamson; Paul A. Wilson

Thousands of transiting exoplanets have been discovered, but spectral analysis of their atmospheres has so far been dominated by a small number of exoplanets and data spanning relatively narrow wavelength ranges (such as 1.1–1.7 micrometres). Recent studies show that some hot-Jupiter exoplanets have much weaker water absorption features in their near-infrared spectra than predicted. The low amplitude of water signatures could be explained by very low water abundances, which may be a sign that water was depleted in the protoplanetary disk at the planet’s formation location, but it is unclear whether this level of depletion can actually occur. Alternatively, these weak signals could be the result of obscuration by clouds or hazes, as found in some optical spectra. Here we report results from a comparative study of ten hot Jupiters covering the wavelength range 0.3–5 micrometres, which allows us to resolve both the optical scattering and infrared molecular absorption spectroscopically. Our results reveal a diverse group of hot Jupiters that exhibit a continuum from clear to cloudy atmospheres. We find that the difference between the planetary radius measured at optical and infrared wavelengths is an effective metric for distinguishing different atmosphere types. The difference correlates with the spectral strength of water, so that strong water absorption lines are seen in clear-atmosphere planets and the weakest features are associated with clouds and hazes. This result strongly suggests that primordial water depletion during formation is unlikely and that clouds and hazes are the cause of weaker spectral signatures.


Monthly Notices of the Royal Astronomical Society | 2013

The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations

F. Pont; David K. Sing; N. P. Gibson; S. Aigrain; Gregory W. Henry; Nawal Husnoo

The hot Jupiter HD 189733b is the most extensively observed exoplanet. Its atmosphere has been detected and characterized in transmission and eclipse spectroscopy, and its phase curve measured at several wavelengths. This paper brings together the results of our campaign to obtain the complete transmission spectrum of the atmosphere of this planet from UV to infrared with the Hubble Space Telescope, using the STIS, ACS and WFC3 instruments. We provide a new tabulation of the transmission spectrum across the entire visible and infrared range. The radius ratio in each wavelength band was re-derived, where necessary, to ensure a consistent treatment of the bulk transit parameters and stellar limb darkening. Special care was taken to correct for, and derive realistic estimates of the uncertainties due to, both occulted and unocculted star spots. The combined spectrum is very different from the predictions of cloud-free models for hot Jupiters: it is dominated by Rayleigh scattering over the whole visible and near-infrared range, the only detected features being narrow sodium and potassium lines. We interpret this as the signature of a haze of condensate grains extending over at least five scaleheights. We show that a dust-dominated atmosphere could also explain several puzzling features of the emission spectrum and phase curves, including the large amplitude of the phase curve at 3.6 μm, the small hotspot longitude shift and the hot mid-infrared emission spectrum. We discuss possible compositions and derive some first-order estimates for the properties of the putative condensate haze/clouds. We finish by speculating that the dichotomy between the two observationally defined classes of hot Jupiter atmospheres, of which HD 189733b and HD 209458b are the prototypes, might not be whether they possess a temperature inversion, but whether they are clear or dusty. We also consider the possibility of a continuum of cloud properties between hot Jupiters, young Jupiters and L-type brown dwarfs.


Monthly Notices of the Royal Astronomical Society | 2008

WASP-3b: a strongly irradiated transiting gas-giant planet

Don Pollacco; I. Skillen; A. Collier Cameron; B. Loeillet; H. C. Stempels; F. Bouchy; N. P. Gibson; L. Hebb; G. Hébrard; Y. C. Joshi; I. McDonald; B. Smalley; A. M. S. Smith; R. A. Street; S. Udry; Richard G. West; D. M. Wilson; P. J. Wheatley; Suzanne Aigrain; K. Alsubai; Chris R. Benn; V. A. Bruce; D. J. Christian; W. I. Clarkson; B. Enoch; A. Evans; A. Fitzsimmons; C. A. Haswell; C. Hellier; Samantha Hickey

We report the discovery of WASP-3b, the third transiting exoplanet to be discovered by the WASP and SOPHIE collaboration. WASP-3b transits its host star USNO-B1.0 1256−0285133 every 1.846 834 ± 0.000 002 d. Our high-precision radial velocity measurements present a variation with amplitude characteristic of a planetary-mass companion and in phase with the light curve. Adaptive optics imaging shows no evidence for nearby stellar companions, and line-bisector analysis excludes faint, unresolved binarity and stellar activity as the cause of the radial velocity variations. We make a preliminary spectroscopic analysis of the host star and find it to have T eff = 6400 ± 100 K and log g = 4.25 ± 0.05 which suggests it is most likely an unevolved main-sequence star of spectral type F7-8V. Our simultaneous modelling of the transit photometry and reflex motion of the host leads us to derive a mass of 1.76 +0.08 −0.14 MJ and radius 1.31 +0.07 −0.14 RJ for WASP-3b. The proximity and relative temperature of the host star suggests that WASP-3b is one of the hottest exoplanets known, and thus has the potential to place stringent constraints on exoplanet atmospheric models.


Scopus | 2009

WASP-12b: The hottest transiting extrasolar planet yet discovered

L. Hebb; Andrew Collier-Cameron; H. C. Stempels; B. Enoch; K. Horne; N. Parley; B. Loeillet; C. Moutou; Don Pollacco; E. K. Simpson; Y. C. Joshi; N. P. Gibson; D. J. Christian; G. Hébrard; Francois Bouchy; R. A. Street; T. A. Lister; S. Udry; M. Mayor; D. Queloz; Richard G. West; I. Skillen; Chris R. Benn; D. M. Wilson; I. McDonald; Anderson; C. Hellier; P. F. L. Maxted; B. Smalley; S. Aigrain

We report on the discovery of WASP-12b, a new transiting extrasolar planet with R pl = 1.79+0.09 –0.09 RJ and M pl = 1.41+0.10 –0.10 M J. The planet and host star properties were derived from a Monte Carlo Markov Chain analysis of the transit photometry and radial velocity data. Furthermore, by comparing the stellar spectrum with theoretical spectra and stellar evolution models, we determined that the host star is a supersolar metallicity ([M/H] = 0.3+0.05 –0.15), late-F (T eff = 6300+200 –100 K) star which is evolving off the zero-age main sequence. The planet has an equilibrium temperature of T eq = 2516 K caused by its very short period orbit (P = 1.09 days) around the hot, twelfth magnitude host star. WASP-12b has the largest radius of any transiting planet yet detected. It is also the most heavily irradiated and the shortest period planet in the literature.


Monthly Notices of the Royal Astronomical Society | 2012

A Gaussian process framework for modelling instrumental systematics: application to transmission spectroscopy

N. P. Gibson; S. Aigrain; S. Roberts; T. Evans; Michael A. Osborne; F. Pont

Transmission spectroscopy, which consists of measuring the wavelength-dependent absorption of starlight by a planet’s atmosphere during a transit, is a powerful probe of atmospheric composition. However, the expected signal is typically orders of magnitude smaller than instrumental systematics and the results are crucially dependent on the treatment of the latter. In this paper, we propose a new method to infer transit parameters in the presence of systematic noise using Gaussian processes, a technique widely used in the machine learning community for Bayesian regression and classification problems. Our method makes use of auxiliary information about the state of the instrument, but does so in a non-parametric manner, without imposing a specific dependence of the systematics on the instrumental parameters, and naturally allows for the correlated nature of the noise. We give an example application of the method to archival NICMOS transmission spectroscopy of the hot Jupiter HDxa0189733, which goes some way towards reconciling the controversy surrounding this data set in the literature. Finally, we provide an appendix giving a general introduction to Gaussian processes for regression, in order to encourage their application to a wider range of problems.


Monthly Notices of the Royal Astronomical Society | 2011

A new look at NICMOS transmission spectroscopy of HD 189733, GJ-436 and XO-1: no conclusive evidence for molecular features

N. P. Gibson; F. Pont; S. Aigrain

We present a re-analysis of archival HST/NICMOS transmission spectroscopy of three exoplanet systems: HD 189733, GJ-436 and XO-1. Detections of several molecules, including H 2 O, CH 4 and CO 2 , have been claimed for HD 189733 and XO-1, but similarly sized features are attributed to systematic noise for GJ-436. The data consist of time-series grism spectra covering a planetary transit. After extracting light curves in independent wavelength channels, we use a linear decorrelation technique to account for instrumental systematics (which is becoming standard in the field), and measure the planet-to-star radius ratio as a function of wavelength. We use a residual permutation algorithm to calculate the uncertainties, in an effort to evaluate the effects of systematic noise on the resulting transmission spectra. For HD 189733, the uncertainties in the transmission spectrum are significantly larger than those previously reported. We also find that the transmission spectrum is considerably altered when using different out-of-transit orbits to remove the systematics, when some parameters are left out of the decorrelation procedure, or when we perform the decorrelation with quadratic functions rather than linear functions. Given that there is no physical reason to believe that the baseline flux should be modelled as a linear function of any particular set of parameters, we interpret this as evidence that the linear decorrelation technique is not a robust method to remove systematic effects from the light curves for each wavelength channel. For XO-1, the parameters measured to decorrelate the light curves would require extrapolation to the in-transit orbit to remove the systematics, and we cannot reproduce the previously reported results. We conclude that the resulting NICMOS transmission spectra are too dependent on the method used to remove systematics to be considered robust detections of molecular species in planetary atmospheres, although the presence of these molecules is not ruled out.


Monthly Notices of the Royal Astronomical Society | 2013

HST hot-Jupiter transmission spectral survey: evidence for aerosols and lack of TiO in the atmosphere of WASP-12b

David K. Sing; A. Lecavelier des Etangs; Jonathan J. Fortney; Adam Burrows; F. Pont; Hannah R. Wakeford; G. E. Ballester; N. Nikolov; Gregory W. Henry; S. Aigrain; Drake Deming; T. Evans; N. P. Gibson; Catherine M. Huitson; Heather A. Knutson; A. Vidal-Madjar; Paul A. Wilson; M.H. Williamson; Kevin J. Zahnle

We present Hubble Space Telescope (HST) optical transmission spectra of the transiting hot-Jupiter WASP-12b, taken with the Space Telescope Imaging Spectrograph instrument. The resulting spectra cover the range 2900–10u2009300u2009A which we combined with archival Wide Field Camera 3 spectra and Spitzer photometry to cover the full optical to infrared wavelength regions. With high spatial resolution, we are able to resolve WASP-12As stellar companion in both our images and spectra, revealing that the companion is in fact a close binary M0V pair, with the three stars forming a triple-star configuration. We derive refined physical parameters of the WASP-12 system, including the orbital ephemeris, finding the exoplanets density is ∼20 peru2009cent lower than previously estimated. From the transmission spectra, we are able to decisively rule out prominent absorption by TiO in the exoplanets atmosphere, as there are no signs of the molecules characteristic broad features nor individual bandheads. Strong pressure-broadened Na and K absorption signatures are also excluded, as are significant metal-hydride features. We compare our combined broad-band spectrum to a wide variety of existing aerosol-free atmospheric models, though none are satisfactory fits. However, we do find that the full transmission spectrum can be described by models which include significant opacity from aerosols: including Rayleigh scattering, Mie scattering, tholin haze and settling dust profiles. The transmission spectrum follows an effective extinction cross-section with a power law of index α, with the slope of the transmission spectrum constraining the quantity αT = −3528 ± 660u2009K, where T is the atmospheric temperature. Rayleigh scattering (α = −4) is among the best-fitting models, though requires low terminator temperatures near 900u2009K. Sub-micron size aerosol particles can provide equally good fits to the entire transmission spectrum for a wide range of temperatures, and we explore corundum as a plausible dust aerosol. The presence of atmospheric aerosols also helps to explain the modestly bright albedo implied by Spitzer observations, as well as the near blackbody nature of the emission spectrum. Ti-bearing condensates on the cooler night-side is the most natural explanation for the overall lack of TiO signatures in WASP-12b, indicating the day/night cold trap is an important effect for very hot Jupiters. These findings indicate that aerosols can play a significant atmospheric role for the entire wide range of hot-Jupiter atmospheres, potentially affecting their overall spectrum and energy balance.


Philosophical Transactions of the Royal Society A | 2012

Gaussian processes for time-series modelling

S. Roberts; Michael A. Osborne; Mark Ebden; Steven Reece; N. P. Gibson; S. Aigrain

In this paper, we offer a gentle introduction to Gaussian processes for time-series data analysis. The conceptual framework of Bayesian modelling for time-series data is discussed and the foundations of Bayesian non-parametric modelling presented for Gaussian processes. We discuss how domain knowledge influences design of the Gaussian process models and provide case examples to highlight the approaches.

Collaboration


Dive into the N. P. Gibson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Evans

University of Oxford

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I. Skillen

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

E. K. Simpson

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

F. Pont

University of Exeter

View shared research outputs
Top Co-Authors

Avatar

Y. C. Joshi

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

F. P. Keenan

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

G. Hébrard

Institut d'Astrophysique de Paris

View shared research outputs
Researchain Logo
Decentralizing Knowledge