N. P. Goldberg
New Mexico State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N. P. Goldberg.
Applied and Environmental Microbiology | 2009
Jennifer J. Randall; N. P. Goldberg; John D. Kemp; Maxim Radionenko; J. M. French; Mary W. Olsen; Stephen F. Hanson
ABSTRACT Xylella fastidiosa, the causal agent of several scorch diseases, is associated with leaf scorch symptoms in Chitalpa tashkentensis, a common ornamental landscape plant used throughout the southwestern United States. For a number of years, many chitalpa trees in southern New Mexico and Arizona exhibited leaf scorch symptoms, and the results from a regional survey show that chitalpa trees from New Mexico, Arizona, and California are frequently infected with X. fastidiosa. Phylogenetic analysis of multiple loci was used to compare the X. fastidiosa infecting chitalpa strains from New Mexico, Arizona, and trees imported into New Mexico nurseries with previously reported X. fastidiosa strains. Loci analyzed included the 16S ribosome, 16S-23S ribosomal intergenic spacer region, gyrase-B, simple sequence repeat sequences, X. fastidiosa-specific sequences, and the virulence-associated protein (VapD). This analysis indicates that the X. fastidiosa isolates associated with infected chitalpa trees in the Southwest are a highly related group that is distinct from the four previously defined taxons X. fastidiosa subsp. fastidiosa (piercei), X. fastidiosa subsp. multiplex, X. fastidiosa subsp. sandyi, and X. fastidiosa subsp. pauca. Therefore, the classification proposed for this new subspecies is X. fastidiosa subsp. tashke.
PLOS ONE | 2015
Rio A. Stamler; Omar Holguin; Barry Dungan; Tanner Schaub; Soumaila Sanogo; N. P. Goldberg; Jennifer J. Randall
Induced resistance in plants is a systemic response to certain microorganisms or chemicals that enhances basal defense responses during subsequent plant infection by pathogens. Inoculation of chile pepper with zoospores of non-host Phytophthora nicotianae or the chemical elicitor beta-aminobutyric acid (BABA) significantly inhibited foliar blight caused by Phytophthora capsici. Tissue extract analyses by GC/MS identified conserved change in certain metabolite concentrations following P. nicotianae or BABA treatment. Induced chile pepper plants had reduced concentrations of sucrose and TCA cycle intermediates and increased concentrations of specific hexose-phosphates, hexose-disaccharides and amino acids. Galactose, which increased significantly in induced chile pepper plants, was shown to inhibit growth of P. capsici in a plate assay.
Plant Disease | 2011
J. M. French; Rio A. Stamler; Jennifer J. Randall; N. P. Goldberg
Phytophthora nicotianae (synonym P. parasitica) Breda de Haan was isolated from recently harvested onion bulbs (Allium cepa) in cold storage from a commercial field in southern New Mexico. Deteriorating, water-soaked tissue from the center of four bulbs was plated onto water agar and incubated at room temperature. After 72 h, cultures of Phytophthora (identified by the presence of coenocytic hyphae and papillate sporangia) were isolated and transferred to V8 agar amended with ampicillin (250 mg/liter), rifampicin (10 mg/liter), and pimaricin (0.2% wt/vol). Isolates were identified as P. nicotianae based on morphological characteristics and DNA analysis. Sporangia were sharply papilliate, noncaducous, and ovoid to spherical. The average sporangium size was 45.9 × 39.9 μm with a length-to-width ratio of 1.15. Clamydospores, both terminal and intercalary, were spherical to ovoid and averaged 37.2 × 35.2 μm (2). PCR from whole-cell extracts was performed on four cultured isolates from the infected onion tissue using previously described primers ITS4 and ITS6, which amplify the 5.8S rDNA and ITS1 and ITS2 internal transcribed spacers (1,4). A band of approximately 890 bp was amplified and directly sequenced (GenBank Accession No. HQ398876). A BLAST search of the NCBI total nucleotide collection revealed a 100% similarity to multiple P. nicotianae isolates previously sequenced (1). To confirm the pathogenicity of the isolates, onion seedlings were inoculated with 25 ml of P. nicotionae zoospore solution (15,000 zoospores/ml). Necrosis of leaf tissue and seedling death was observed 5 days postinoculation. P. nicotianae was reisolated from the infected onion seedlings and the ITS region was sequenced to confirm its identity. P. nicotianae was previously reported in bulb onion from Australia, Taiwan (Formosa), and Zimbabwe (Rhodesia) (2). P. nicotianae was reported on bunching onions (A. fistulosum) in Hawaii in 1989 (3). Onions are an important crop in New Mexico with a total production value of 47 million dollars in 2008 (NM Agriculture Statistics 2008). This discovery of a potentially significant postharvest disease poses a threat to the onion industry in New Mexico. To our knowledge, this is the first report of P. nicotianae in bulb onion in the United States and the first report of P. nicotianae in New Mexico on any crop. References: (1) D. E. L. Cooke and J. M. Duncan. Mycol. Res. 101:667, 1997. (2) D. C. Erwin and O. K. Ribeiro. Page 56 in: Phytophthora Diseases Worldwide. The American Phytopathological Society, St Paul, MN, 1996. (3) R. D. Raabe et al. Information Text Series No. 22. University of Hawaii. Hawaii Inst. Trop. Agric. Human Resources, 1981. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, 1990.
Plant Disease | 2007
Jennifer J. Randall; Maxim Radionenko; J. M. French; Mary W. Olsen; N. P. Goldberg; Stephen F. Hanson
Different strains of Xylella fastidiosa cause a variety of significant disease problems in agricultural and ornamental plants, including Pierces disease in grapes, oleander leaf scorch, pecan bacterial leaf scorch, and alfalfa dwarf disease. X. fastidiosa has never been reported in New Mexico but is known to exist in surrounding states (California, Arizona, and Texas). During the summer of 2006, several chitalpa (Chitalpa tashkinensis) hybrid trees with leaf scorch symptoms and branch die back were observed in Las Cruces, NM and they tested positive for X. fastidiosa by ELISA. Additional samples from these plants and others were analyzed by ELISA, PCR (2), and cultured on XfD2 medium (1). Known positive and negative oleander samples from Arizona were included as controls. Fifteen of thirty tested chitalpa were PCR and ELISA positive, indicating that they were infected with X. fastidiosa. Bacterial colonies that were PCR positive were also recovered from 10 of the XF positive samples that were plated. DNA sequences of PCR products amplified from chitalpa and isolated bacterial colonies (GenBank Accession Nos. EF109936 and EF109937) were identical to each other, 97% similar to X. fastidiosa strain JB-USNA, and 96% similar to the Temecula 1 strain. Independent ELISA testing (Barry Hill, California Department Food and Agriculture, Sacramento, CA) confirmed our ELISA and PCR results. On the basis of these results, we conclude that X. fastidiosa is present in New Mexico and that the common landscape ornamental chitalpa is a host for X. fastidiosa. Additional work is required to determine if X. fastidiosa is pathogenic to chitalpa and to examine the relevance of this potential X. fastidiosa reservoir to agricultural production in New Mexico and other areas where chitalpa is grown. References: (1) R. P. P. Almeida et al. Curr. Microbiol. 48:368, 2004. (2) M. R. Pooler et al. Lett. Appl. Microbiol. 25:123, 1997.
Applied and Environmental Microbiology | 2016
Rio A. Stamler; Soumalia Sanogo; N. P. Goldberg; Jennifer J. Randall
ABSTRACT Phytophthora species were isolated from rivers and streams in the southwestern United States by leaf baiting and identified by sequence analysis of internal transcribed spacer (ITS) ribosomal DNA (rDNA). The major waterways examined included the Rio Grande River, Gila River, Colorado River, and San Juan River. The most prevalent species identified in rivers and streams were Phytophthora lacustris and P. riparia, both members of Phytophthora ITS clade 6. P. gonapodyides, P. cinnamomi, and an uncharacterized Phytophthora species in clade 9 were also recovered. In addition, six isolates recovered from the Rio Grande River were shown to be hybrids of P. lacustris × P. riparia. Pathogenicity assays using P. riparia and P. lacustris failed to produce any disease symptoms on commonly grown crops in the southwestern United States. Inoculation of Capsicum annuum with P. riparia was shown to inhibit disease symptom development when subsequently challenged with P. capsici, a pathogenic Phytophthora species. IMPORTANCE Many Phytophthora species are significant plant pathogens causing disease on a large variety of crops worldwide. Closer examinations of streams, rivers, and forest soils have also identified numerous Phytophthora species that do not appear to be phytopathogens and likely act as early saprophytes in aquatic and saturated environments. To date, the Phytophthora species composition in rivers and streams of the southwestern United States has not been evaluated. This article details a study to determine the identity and prevalence of Phytophthora species in rivers and streams located in New Mexico, Arizona, Colorado, Utah, and Texas. Isolated species were evaluated for pathogenicity on crop plants and for their potential to act as biological control agents.
Plant Disease | 2013
J. M. French; Jennifer J. Randall; Rio A. Stamler; A. C. Segura; N. P. Goldberg
In December 2011, edible sunflower sprouts (Helianthus annus) of two different commercially grown cultivars (Sungrown and Tiensvold) exhibiting stem and cotyledon lesions were submitted to the New Mexico State University Plant Clinic for disease diagnosis. The sample originated from an organic farm in Santa Fe County where the grower utilizes a small indoor growing facility. Stem lesions were elongate, reddish brown, and often constricted, resulting in stem girdling. Lesions on the cotyledons were dark brown with tan centers and round to irregular in shape. In some cases, the entire cotyledon was blighted. Fungal hyphae were observed on some lesions using a dissecting microscope. Colletotrichum acutatum was isolated from stem and cotyledon lesions when symptomatic tissue was plated on water agar. Conidia were fusiform ranging from 6.4 to 18.4 μm long and 2.1 to 5.1 μm wide and averaged 11.9 μm × 3.4 μm. Spores were measured from cream-colored colonies produced on acidified potato dextrose agar. PCR amplification and sequence analysis of 5.8S ribosomal DNA and internal transcribed spacers I and II was performed using primers ITS4 and ITS6 (2). An amplification product of approximately 600 base pairs in size was directly sequenced (GenBank Accession No. JX444690). A BLAST search of the NCBI total nucleotide collection revealed a 99% identity to multiple C. acutatum (syn: C. simmondsii) isolates. Four isolates were identified as C. acutatum based on morphological characteristics and DNA analysis. Kochs postulates were performed using four isolates of the pathogen and the two commercial sunflower cultivars (Sungrown and Tiensvold) originally submitted for disease analysis. Sunflower seeds were imbibed in distilled water for 24 h then sewn into peat plugs. Prior to seed germination, 5 ml of a C. acutatum spore solution (1 × 106/ml) from each isolate was applied to five peat plugs using an atomizer. Control plants were inoculated with distilled water and otherwise treated identically. Both sunflower cultivars were inoculated with each isolate of the pathogen and the test was replicated twice. The sewn peat plugs were incubated for 5 days at 21°C and 50% relative humidity. Symptoms similar to the original samples were present on 100% of the sprouts after 5 days. PCR and sequence analysis performed on cultures obtained from lesions showed a 100% match to the original New Mexico isolates fulfilling Kochs postulates. In an indoor organic facility, such as the one in NM, this disease has the potential to be very difficult to manage and the potential to infect a high percentage of the crop resulting in significant economic losses. To our knowledge, this is the second report of C. acutatum on sunflower sprouts in the United States (1) and the first report in New Mexico. References: (1) S. T. Koike et al. Plant Dis. 93:1351, 2009. (2) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, 1990.
Plant Disease | 2011
J. M. French; Rio A. Stamler; Jennifer J. Randall; N. P. Goldberg
Phytophthora nicotianae Breda de Haan was isolated from turning tomato fruit (Solanum lycopersicum L.) in August 2010 from a garden in central New Mexico. Symptoms typical of buckeye rot including brown, water-soaked, necrotic lesions with concentric rings were observed on three tomato fruit. Tissue from each fruit was surface sterilized and plated onto water agar and incubated at room temperature. After 72 h, colonies of Phytophthora (identified by the presence of coenocytic hyphae and papillate sporangia) were found and subcultured by hyphal tips to V8 agar amended with ampicillin (250 mg/liter), rifampicin (10 mg/liter), and pimaricin (0.2% wt/vol). The isolates of Phytophthora were identified as P. nicotianae based on morphological characteristics and DNA analysis. Sporangia were sharply papillate, noncaducous, and ovoid to spherical. The average sporangium size was 44.5 × 35.5 μm with a length-to-width ratio of 1.26. Chlamydospores, both terminal and intercalary, were spherical to ovoid and averaged 38.9 × 37.5 μm. PCR amplification and sequence analysis on three isolates from the infected tomato tissue was performed using primers ITS4 and ITS6 that amplify the 5.8S rDNA and ITSI and ITSII internal transcribed spacers (1,2). A band of approximately 890 bp was amplified and directly sequenced (GenBank Accession No. HQ711620). A BLAST search of the NCBI total nucleotide collection revealed a 100% similarity to multiple P. nicotianae isolates previously sequenced. Pathogenicity tests with sequenced P. nicotianae isolates were performed to confirm virulence on tomato fruit. Tomatoes were surface sterilized with 95% ethanol and 0.1 ml of a P. nicotianae zoospore suspension (10,000 zoospores/ml) or sterile water was pipetted onto the surface of the tomato fruit. After 5 days in a humidity chamber, all three inoculated tomatoes had expanding water-soaked, circular lesions and the negative control showed no disease symptoms. P. nicotianae was successfully reisolated from the inoculated tomato tissue and the ITS region was sequenced to confirm its identity. Although the disease has been reported in many other states since the early 1900s, to our knowledge, this is the first report of P. nicotianae causing disease on tomato in New Mexico. References: (1) D. E. L. Cooke and J. M. Duncan. Mycol. Res. 101:667, 1997. (2) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, 1990.
Archives of Virology | 2016
J. M. French; N. P. Goldberg; Jennifer J. Randall; Stephen F. Hanson
Tomato spotted wilt virus (TSWV) is an important pathogen of many ornamental, greenhouse and agronomic crops worldwide. TSWV also causes sporadic problems in a number of crops in New Mexico (NM). Nucleocapsid gene sequences obtained from six different crop species across the state over four different years were used to characterize the NM TSWV population. This analysis shows that NM is affected by a unique TSWV population that is part of larger independent population present in the southwestern US. This population likely arose due to geographic isolation and is related to other TSWV populations from the US, Spain, and Italy.
Plant Health Progress | 2007
Jennifer J. Randall; Maxim Radionenko; J. M. French; N. P. Goldberg; Stephen F. Hanson
European Journal of Plant Pathology | 2015
Periasamy Chitrampalam; N. P. Goldberg; Mary W. Olsen