N. Park
University of Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N. Park.
The Astrophysical Journal | 2010
H. S. Ahn; P. Allison; M. G. Bagliesi; J. J. Beatty; G. Bigongiari; J.T. Childers; N. B. Conklin; S. Coutu; Michael A. DuVernois; O. Ganel; J. H. Han; J. A. Jeon; K. C. Kim; M.H. Lee; L. Lutz; P. Maestro; A. Malinin; P.S. Marrocchesi; S. Minnick; S. I. Mognet; J. Nam; S. Nam; S. Nutter; I. H. Park; N. Park; E. S. Seo; R. Sina; J. Wu; J. Yang; Y.S. Yoon
The balloon-borne Cosmic Ray Energetics And Mass experiment launched five times from Antarctica has achieved a cumulative flight duration of about 156 days above 99.5% of the atmosphere. The instrument is configured with complementary and redundant particle detectors designed to extend direct measurements of cosmic-ray composition to the highest energies practical with balloon flights. All elements from protons to iron nuclei are separated with excellent charge resolution. Here, we report results from the first two flights of ~70 days, which indicate hardening of the elemental spectra above ~200 GeV/nucleon and a spectral difference between the two most abundant species, protons and helium nuclei. These results challenge the view that cosmic-ray spectra are simple power laws below the so-called knee at ~1015 eV. This discrepant hardening may result from a relatively nearby source, or it could represent spectral concavity caused by interactions of cosmic rays with the accelerating shock. Other possible explanations should also be investigated.
The Astrophysical Journal | 2011
Y.S. Yoon; H. S. Ahn; P. Allison; M. G. Bagliesi; J. J. Beatty; G. Bigongiari; P. J. Boyle; J.T. Childers; N. B. Conklin; S. Coutu; Michael A. DuVernois; O. Ganel; J. H. Han; J. A. Jeon; K. C. Kim; M.H. Lee; L. Lutz; P. Maestro; A. Malinine; P.S. Marrocchesi; S. Minnick; S. I. Mognet; S. Nam; S. Nutter; I. H. Park; N. Park; E. S. Seo; R. Sina; Simon P. Swordy; S. P. Wakely
Cosmic-ray proton and helium spectra have been measured with the balloon-borne Cosmic Ray Energetics And Mass experiment flown for 42 days in Antarctica in the 2004–2005 austral summer season. High-energy cosmic-ray data were collected at an average altitude of �38.5 km with an average atmospheric overburden of �3.9 g cm −2 . Individual elements are clearly separated with a charge resolution of �0.15 e (in charge units) and �0.2 e for protons and helium nuclei, respectively. The measured spectra at the top of the atmosphere are represented by power laws with a spectral index of 2.66 ± 0.02 for protons from 2.5 TeV to 250 TeV and –2.58 ± 0.02 for helium nuclei from 630 GeV nucleon −1 to 63 TeV nucleon −1 . They are harder than previous measurements
Science | 2011
E. Aliu; T. Arlen; T. Aune; M. Beilicke; W. Benbow; A. Bouvier; S. M. Bradbury; J. H. Buckley; V. Bugaev; K. L. Byrum; A. Cannon; A. Cesarini; J. L. Christiansen; L. Ciupik; E. Collins-Hughes; M. P. Connolly; W. Cui; R. Dickherber; C. Duke; M. Errando; A. Falcone; J. P. Finley; G. Finnegan; L. Fortson; A. Furniss; N. Galante; D. Gall; K. Gibbs; G. H. Gillanders; S. Godambe
This detection constrains the mechanism and emission region of gamma-ray radiation in the pulsar’s magnetosphere. We report the detection of pulsed gamma rays from the Crab pulsar at energies above 100 giga–electron volts (GeV) with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) array of atmospheric Cherenkov telescopes. The detection cannot be explained on the basis of current pulsar models. The photon spectrum of pulsed emission between 100 mega–electron volts and 400 GeV is described by a broken power law that is statistically preferred over a power law with an exponential cutoff. It is unlikely that the observation can be explained by invoking curvature radiation as the origin of the observed gamma rays above 100 GeV. Our findings require that these gamma rays be produced more than 10 stellar radii from the neutron star.
The Astrophysical Journal | 2009
H. S. Ahn; P. Allison; M. G. Bagliesi; Loius M. Barbier; J. J. Beatty; G. Bigongiari; T. J. Brandt; J.T. Childers; N. B. Conklin; S. Coutu; Michael A. DuVernois; O. Ganel; J. H. Han; J. A. Jeon; K. C. Kim; M.H. Lee; P. Maestro; A. Malinine; P.S. Marrocchesi; S. Minnick; S. I. Mognet; S. Nam; S. Nutter; I. H. Park; N. Park; E. S. Seo; R. Sina; P. Walpole; J. Wu; J. Yang
We present new measurements of the energy spectra of cosmic-ray (CR) nuclei from the second flight of the balloon-borne experiment Cosmic-Ray Energetics And Mass (CREAM). The instrument included different particle detectors to provide redundant charge identification and measure the energy of CRs up to several hundred TeV. The measured individual energy spectra of C, O, Ne, Mg, Si, and Fe are presented up to ~1014 eV. The spectral shape looks nearly the same for these primary elements and it can be fitted to an E –2.66 ± 0.04 power law in energy. Moreover, a new measurement of the absolute intensity of nitrogen in the 100-800 GeV/n energy range with smaller errors than previous observations, clearly indicates a hardening of the spectrum at high energy. The relative abundance of N/O at the top of the atmosphere is measured to be 0.080 ± 0.025 (stat.)±0.025 (sys.) at ~800 GeV/n, in good agreement with a recent result from the first CREAM flight.
The Astrophysical Journal | 2012
T. Arlen; T. Aune; M. Beilicke; W. Benbow; A. Bouvier; J. H. Buckley; V. Bugaev; K. L. Byrum; A. Cannon; A. Cesarini; L. Ciupik; E. Collins-Hughes; M. P. Connolly; W. Cui; R. Dickherber; J. Dumm; A. Falcone; S. Federici; Q. Feng; J. P. Finley; G. Finnegan; L. Fortson; A. Furniss; N. Galante; D. Gall; S. Godambe; S. Griffin; J. Grube; G. Gyuk; J. Holder
Observations of radio halos and relics in galaxy clusters indicate efficient electron acceleration. Protons should likewise be accelerated and, on account of weak energy losses, can accumulate, suggesting that clusters may also be sources of very high energy (VHE; E > 100 GeV) gamma-ray emission. We report here on VHE gamma-ray observations of the Coma galaxy cluster with the VERITAS array of imaging Cerenkov telescopes, with complementing Fermi Large Area Telescope observations at GeV energies. No significant gamma-ray emission from the Coma Cluster was detected. Integral flux upper limits at the 99% confidence level were measured to be on the order of (2-5) × 10–8 photons m –2 s –1 (VERITAS, >220 GeV) and ~2 × 10–6 photons m –2 s –1 (Fermi, 1-3 GeV), respectively. We use the gamma-ray upper limits to constrain cosmic rays (CRs) and magnetic fields in Coma. Using an analytical approach, the CR-to-thermal pressure ratio is constrained to be <16% from VERITAS data and <1.7% from Fermi data (averaged within the virial radius). These upper limits are starting to constrain the CR physics in self-consistent cosmological cluster simulations and cap the maximum CR acceleration efficiency at structure formation shocks to be <50%. Alternatively, this may argue for non-negligible CR transport processes such as CR streaming and diffusion into the outer cluster regions. Assuming that the radio-emitting electrons of the Coma halo result from hadronic CR interactions, the observations imply a lower limit on the central magnetic field in Coma of ~(2-5.5) μG, depending on the radial magnetic field profile and on the gamma-ray spectral index. Since these values are below those inferred by Faraday rotation measurements in Coma (for most of the parameter space), this renders the hadronic model a very plausible explanation of the Coma radio halo. Finally, since galaxy clusters are dark matter (DM) dominated, the VERITAS upper limits have been used to place constraints on the thermally averaged product of the total self-annihilation cross section and the relative velocity of the DM particles, σv.
Physical Review D | 2012
E. Aliu; S. Archambault; T. Arlen; T. Aune; M. Beilicke; W. Benbow; A. Bouvier; S. M. Bradbury; J. H. Buckley; V. Bugaev; K. L. Byrum; A. Cannon; A. Cesarini; J. L. Christiansen; L. Ciupik; E. Collins-Hughes; M. P. Connolly; W. Cui; G. Decerprit; R. Dickherber; J. Dumm; M. Errando; A. Falcone; Q. Feng; Francesc Ferrer; J. P. Finley; G. Finnegan; L. Fortson; A. Furniss; N. Galante
The VERITAS array of Cherenkov telescopes has carried out a deep observational program on the nearby dwarf spheroidal galaxy Segue 1. We report on the results of nearly 48 hours of good quality selected data, taken between January 2010 and May 2011. No significant γ-ray emission is detected at the nominal position of Segue 1, and upper limits on the integrated flux are derived. According to recent studies, Segue 1 is the most dark matter-dominated dwarf spheroidal galaxy currently known. We derive stringent bounds on various annihilating and decaying dark matter particle models. The upper limits on the velocity-weighted annihilation cross-section are ⟨σv⟩95% CL≲10−23 cm3 s−1, improving our limits from previous observations of dwarf spheroidal galaxies by at least a factor of 2 for dark matter particle masses mχ≳300 GeV. The lower limits on the decay lifetime are at the level of τ95% CL≳1024 s. Finally, we address the interpretation of the cosmic ray lepton anomalies measured by ATIC and PAMELA in terms of dark matter annihilation, and show that the VERITAS observations of Segue 1 disfavor such a scenario.
The Astrophysical Journal | 2013
T. Arlen; T. Aune; M. Beilicke; W. Benbow; A. Bouvier; J. H. Buckley; V. Bugaev; A. Cesarini; L. Ciupik; M. P. Connolly; W. Cui; R. Dickherber; J. Dumm; M. Errando; A. Falcone; S. Federici; Q. Feng; J. P. Finley; G. Finnegan; L. Fortson; A. Furniss; N. Galante; D. Gall; S. Griffin; J. Grube; G. Gyuk; D. Hanna; J. Holder; T. B. Humensky; P. Kaaret
We report on the detection of a very rapid TeV gamma-ray flare from BL Lacertae on 2011 June 28 with the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The flaring activity was observed during a 34.6 minute exposure, when the integral flux above 200 GeV reached (3.4 ± 0.6) × 10–6 photons m–2 s–1, roughly 125% of the Crab Nebula flux measured by VERITAS. The light curve indicates that the observations missed the rising phase of the flare but covered a significant portion of the decaying phase. The exponential decay time was determined to be 13 ± 4 minutes, making it one of the most rapid gamma-ray flares seen from a TeV blazar. The gamma-ray spectrum of BL Lacertae during the flare was soft, with a photon index of 3.6 ± 0.4, which is in agreement with the measurement made previously by MAGIC in a lower flaring state. Contemporaneous radio observations of the source with the Very Long Baseline Array revealed the emergence of a new, superluminal component from the core around the time of the TeV gamma-ray flare, accompanied by changes in the optical polarization angle. Changes in flux also appear to have occurred at optical, UV, and GeV gamma-ray wavelengths at the time of the flare, although they are difficult to quantify precisely due to sparse coverage. A strong flare was seen at radio wavelengths roughly four months later, which might be related to the gamma-ray flaring activities. We discuss the implications of these multiwavelength results.
The Astrophysical Journal | 2012
E. Aliu; S. Archambault; T. Arlen; T. Aune; M. Beilicke; W. Benbow; M. Böttcher; A. Bouvier; S. M. Bradbury; J. H. Buckley; V. Bugaev; K. L. Byrum; A. Cannon; A. Cesarini; L. Ciupik; E. Collins-Hughes; M. P. Connolly; Paolo S. Coppi; W. Cui; G. Decerprit; R. Dickherber; J. Dumm; M. Errando; A. Falcone; Q. Feng; J. P. Finley; G. Finnegan; L. Fortson; A. Furniss; N. Galante
We report on the discovery of high-energy (HE; E > 0.1 GeV) and very high energy (VHE; E > 100 GeV) γ-ray emission from the high-frequency-peaked BL Lac object RBS 0413. VERITAS, a ground-based γ-ray observatory, detected VHE γ rays from RBS 0413 with a statistical significance of 5.5 standard deviations (σ) and a γ-ray flux of (1.5 ± 0.6stat ± 0.7syst) × 10–8 photons m–2 s–1 (~1% of the Crab Nebula flux) above 250 GeV. The observed spectrum can be described by a power law with a photon index of 3.18 ± 0.68stat ± 0.30syst. Contemporaneous observations with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope detected HE γ rays from RBS 0413 with a statistical significance of more than 9σ, a power-law photon index of 1.57 ± 0.12stat +0.11 – 0.12sys, and a γ-ray flux between 300 MeV and 300 GeV of (1.64 ± 0.43stat +0.31 – 0.22sys) × 10–5 photons m–2 s–1. We present the results from Fermi-LAT and VERITAS, including a spectral energy distribution modeling of the γ-ray, quasi-simultaneous X-ray (Swift-XRT), ultraviolet (Swift-UVOT), and R-band optical (MDM) data. We find that, if conditions close to equipartition are required, both the combined synchrotron self-Compton/external-Compton and the lepto-hadronic models are preferred over a pure synchrotron self-Compton model.
The Astrophysical Journal | 2011
V. A. Acciari; E. Aliu; T. Arlen; T. Aune; M. Beilicke; W. Benbow; S. M. Bradbury; J. H. Buckley; V. Bugaev; K. L. Byrum; A. Cannon; A. Cesarini; J. L. Christiansen; L. Ciupik; E. Collins-Hughes; M. P. Connolly; W. Cui; C. Duke; M. Errando; A. Falcone; J. P. Finley; G. Finnegan; L. Fortson; A. Furniss; N. Galante; D. Gall; S. Godambe; S. Griffin; J. Grube; R. Guenette
We present the results of 16 Swift-triggered Gamma-ray burst (GRB) follow-up observations taken with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) telescope array from 2007 January to 2009 June. The median energy threshold and response time of these observations were 260 GeV and 320 s, respectively. Observations had an average duration of 90 minutes. Each burst is analyzed independently in two modes: over the whole duration of the observations and again over a shorter timescale determined by the maximum VERITAS sensitivity to a burst with a t –1.5 time profile. This temporal model is characteristic of GRB afterglows with high-energy, long-lived emission that have been detected by the Large Area Telescope on board the Fermi satellite. No significant very high energy (VHE) gamma-ray emission was detected and upper limits above the VERITAS threshold energy are calculated. The VERITAS upper limits are corrected for gamma-ray extinction by the extragalactic background light and interpreted in the context of the keV emission detected by Swift. For some bursts the VHE emission must have less power than the keV emission, placing constraints on inverse Compton models of VHE emission.
The Astrophysical Journal | 2014
E. Aliu; T. Aune; B. Behera; M. Beilicke; W. Benbow; K. Berger; R. Bird; A. Bouvier; J. H. Buckley; V. Bugaev; M. Cerruti; X. Chen; L. Ciupik; M. P. Connolly; W. Cui; J. Dumm; Vikram V. Dwarkadas; M. Errando; A. Falcone; S. Federici; Q. Feng; J. P. Finley; H. Fleischhack; P. Fortin; L. Fortson; A. Furniss; N. Galante; G. H. Gillanders; E. V. Gotthelf; S. Griffin
We present very high energy (VHE) imaging of MGRO J2019+37 obtained with the VERITAS observatory. The bright extended (~2°) unidentified Milagro source is located toward the rich star formation region Cygnus-X. MGRO J2019+37 is resolved into two VERITAS sources. The faint, point-like source VER J2016+371 overlaps CTB 87, a filled-center remnant (SNR) with no evidence of a supernova remnant shell at the present time. Its spectrum is well fit in the 0.65-10 TeV energy range by a power-law model with photon index 2.3 ± 0.4. VER J2019+378 is a bright extended (~1°) source that likely accounts for the bulk of the Milagro emission and is notably coincident with PSR J2021+3651 and the star formation region Sh 2–104. Its spectrum in the range 1-30 TeV is well fit with a power-law model of photon index 1.75 ± 0.3, among the hardest values measured in the VHE band, comparable to that observed near Vela-X. We explore the unusual spectrum and morphology in the radio and X-ray bands to constrain possible emission mechanisms for this source.