Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where N. Pomphrey is active.

Publication


Featured researches published by N. Pomphrey.


Nuclear Fusion | 2000

Exploration of Spherical Torus Physics in the NSTX Device

M. Ono; S.M. Kaye; Yueng Kay Martin Peng; G. Barnes; W. Blanchard; Mark Dwain Carter; J. Chrzanowski; L. Dudek; R. Ewig; D.A. Gates; Ron Hatcher; Thomas R. Jarboe; S.C. Jardin; D. Johnson; R. Kaita; M. Kalish; C. Kessel; H.W. Kugel; R. Maingi; R. Majeski; J. Manickam; B. McCormack; J. Menard; D. Mueller; B.A. Nelson; B. E. Nelson; C. Neumeyer; G. Oliaro; F. Paoletti; R. Parsells

The National Spherical Torus Experiment (NSTX) is being built at the Princeton Plasma Physics Laboratory to test the fusion physics principles for the Spherical Torus (ST) concept at the MA level. The NSTX nominal plasma parameters are R {sub 0} = 85 cm, a = 67 cm, R/a greater than or equal to 1.26, B {sub T} = 3 kG, I {sub p} = 1 MA, q {sub 95} = 14, elongation {kappa} less than or equal to 2.2, triangularity {delta} less than or equal to 0.5, and plasma pulse length of up to 5 sec. The plasma heating/current drive (CD) tools are High Harmonic Fast Wave (HHFW) (6 MW, 5 sec), Neutral Beam Injection (NBI) (5 MW, 80 keV, 5 sec), and Coaxial Helicity Injection (CHI). Theoretical calculations predict that NSTX should provide exciting possibilities for exploring a number of important new physics regimes including very high plasma beta, naturally high plasma elongation, high bootstrap current fraction, absolute magnetic well, and high pressure driven sheared flow. In addition, the NSTX program plans to explore fully noninductive plasma start-up, as well as a dispersive scrape-off layer for heat and particle flux handling.


Physics of Plasmas | 1994

Investigation of magnetic reconnection during a sawtooth crash in a high-temperature tokamak plasma

Masaaki Yamada; F. M. Levinton; N. Pomphrey; R. V. Budny; J. Manickam; Y. Nagayama

In this paper a laboratory investigation is made on magnetic reconnection in high‐temperature Tokamak Fusion Test Reactor (TFTR) plasmas [Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 51]. The motional Stark effect (MSE) diagnostic is employed to measure the pitch angle profile of magnetic field lines, and hence the q profile. An analytical expression that relates pitch angle to q profile is presented for a toroidal plasma with circular cross section. During the crash phase of sawtooth oscillations in plasma discharges, the ECE (electron cyclotron emission) diagnostic measures a fast flattening of the two‐dimensional (2‐D) electron temperature profile in a poloidal plane, an observation consistent with the Kadomtsev reconnection theory. On the other hand, the MSE measurements indicate that central q values do not relax to unity after the crash, but increase only by 5%–15%, typically from 0.7 to 0.8. The latter result is in contrad...


Fusion Technology | 1999

Physics design of the national spherical torus experiment

S.M. Kaye; M. Ono; Yueng-Kay Martin Peng; D. B. Batchelor; Mark Dwain Carter; Wonho Choe; Robert J. Goldston; Yong-Seok Hwang; E. Fred Jaeger; Thomas R. Jarboe; Stephen C. Jardin; D.W. Johnson; R. Kaita; Charles Kessel; H.W. Kugel; R. Maingi; R. Majeski; Janhardan Manickam; J. Menard; David Mikkelsen; David J. Orvis; Brian A. Nelson; F. Paoletti; N. Pomphrey; Gregory Rewoldt; Steven Anthony Sabbagh; Dennis J Strickler; E. J. Synakowski; J. R. Wilson

The mission of the National Spherical Torus Experiment (NSTX) is to prove the principles of spherical torus physics by producing high-beta toroidal plasmas that are non-inductively sustained, and whose current profiles are in steady-state. NSTX will be one of the first ultra low a[P(input) up to 11 MW] in order to produce high-beta toroidal (25 to 40%), low collisionality, high bootstrap fraction (less than or equal to 70%) discharges. Both radio-frequency (RF) and neutral-beam (NB) heating and current drive will be employed. Built into NSTX is sufficient configurational flexibility to study a range of operating space and the resulting dependences of the confinement, micro- and MHD stability, and particle and power handling properties. NSTX research will be carried out by a nationally based science team.


Nuclear Fusion | 1998

Circuit equation formulation of resistive wall mode feedback stabilization schemes

M. Okabayashi; N. Pomphrey; Ron Hatcher

Recently, various schemes for controlling the resistive wall mode have been proposed. Here, the problem of resistive wall mode feedback control is formulated utilizing concepts from electrical circuit theory. Each of the coupled elements (the perturbed plasma current, the poloidal passive shell system and the active coil system) is considered as lumped parameter electrical circuits obeying the usual laws of linear circuit theory. A dispersion relation is derived using different schemes for the feedback logic. The various schemes differ in the choice of sensor signal, which is determined by some combination of the three independent circuit currents. Feedback schemes are discussed which can, ideally, completely stabilize the kink mode. These schemes depend, for their success, on a suitable choice for the location of the sensors. A feedback scheme based on sensing the passive shell eddy current is discussed which seeks to drive the feedback system response to a point of marginal stability. For realizable feedback gain factors, this feedback system can suppress the kink mode amplitude for times that are very long compared with the L/R time-scale of the passive shell system. The circuit equation approach discussed provides a useful means for comparing various control strategies for n ≥ 1 kink mode control, and allows useful analogies to be drawn between kink mode control and the control of n = 0 vertical position instabilities.


Physics of Plasmas | 2000

Physics issues in the design of high-beta, low-aspect-ratio stellarator experiments

G.H. Neilson; A. Reiman; M. C. Zarnstorff; A. Brooks; G. Y. Fu; R.J. Goldston; L. P. Ku; Zhihong Lin; R. Majeski; Donald Monticello; H. Mynick; N. Pomphrey; M. H. Redi; W. Reiersen; J. Schmidt; S.P. Hirshman; James F. Lyon; Lee A. Berry; B. E. Nelson; Raul Sanchez; Donald A. Spong; Allen H. Boozer; W. H. Miner; Prashant M. Valanju; W.A. Cooper; M. Drevlak; P. Merkel; C. Nuehrenberg

High-beta, low-aspect-ratio ~‘‘compact’’ ! stellarators are promising solutions to the problem of developing a magnetic plasma configuration for magnetic fusion power plants that can be sustained in steady state without disrupting. These concepts combine features of stellarators and advanced tokamaks and have aspect ratios similar to those of tokamaks ~2‐4!. They are based on computed plasma configurations that are shaped in three dimensions to provide desired stability and transport properties. Experiments are planned as part of a program to develop this concept. A b54% quasi-axisymmetric plasma configuration has been evaluated for the National Compact Stellarator Experiment ~NCSX!. It has a substantial bootstrap current and is shaped to stabilize ballooning, external kink, vertical, and neoclassical tearing modes without feedback or close-fitting conductors. Quasi-omnigeneous plasma configurations stable to ballooning modes at b54% have been evaluated for the Quasi-Omnigeneous Stellarator ~QOS! experiment. These equilibria have relatively low bootstrap currents and are insensitive to changes in beta. Coil configurations have been calculated that reconstruct these plasma configurations, preserving their important physics properties. Theory- and experiment-based confinement analyses are used to evaluate the technical capabilities needed to reach target plasma conditions. The physics basis for these complementary experiments is described.


Physics of Plasmas | 1998

Studies of global stability of field-reversed configuration plasmas using a rigid body model

Hantao Ji; Masaaki Yamada; Russell M. Kulsrud; N. Pomphrey; Haruhiko Himura

Global stability of field-reversed configuration (FRC) plasmas has been studied using a simple rigid body model in the parameter space of s (the ratio of the separatrix radius to the average ion gyro-radius) and plasma elongation E (the ratio of the separatrix length to the separatrix diameter). Tilt stability is predicted, independent of s, for FRC’s with low E (oblate), while the tilt stability of FRC’s with large E (prolate) depends on s/E. It is found that plasma rotation due to ion diamagnetic drift can stabilize the tilt mode when s/E≲1.7. The so-called collisionless ion gyro-viscosity also is identified to stabilize tilt when s/E≲2.2. Combining these two effects, the stability regime broadens to s/E≲2.8, consistent with previously developed theories. A small additional rotation (e.g., a Mach number of 0.2) can improve tilt stability significantly at large E. A similar approach is taken to study the physics of the shift stability. It is found that radial shift is unstable when E<1 while axial shift ...


Plasma Physics and Controlled Fusion | 1999

Physics Design of a High-beta Quasi-axisymmetric Stellarator

A. Reiman; G. Y. Fu; S.P. Hirshman; L. P. Ku; Donald Monticello; H. Mynick; M. H. Redi; Donald A. Spong; M. C. Zarnstorff; B. D. Blackwell; Allen H. Boozer; A. Brooks; W.A. Cooper; M Drevlak; R.J. Goldston; J. H. Harris; M. Isaev; Charles Kessel; Zhihong Lin; James F. Lyon; P. Merkel; M. Mikhailov; W. H. Miner; G.H. Neilson; M. Okamoto; N. Pomphrey; W. Reiersen; Raul Sanchez; J. Schmidt; A.A. Subbotin

Note: 8th Toki 11th International Stellarator Conference, Toki-City, Japan, September/October 1997, Proc. published in J. Plasma and Fusion Res., SERIES, Vol. 1, 429 - 432 (1998) Reference CRPP-CONF-1998-055 Record created on 2008-05-13, modified on 2016-08-08


Nuclear Fusion | 1996

Mechanism of vertical displacement events in JT-60U disruptive discharges

Y. Nakamura; R. Yoshino; Y. Neyatani; Toshihide Tsunematsu; M. Azumi; N. Pomphrey; Stephen C. Jardin

Enhanced vertical displacement events (VDEs), which are frequently observed in JT-60U disruptive discharges, are investigated using the Tokamak Simulation Code (TSC). The rapid plasma current quench can accelerate the vertical displacement, owing to both the up/down asymmetry of the eddy current distribution arising from the asymmetric geometry of the JT-60U vacuum vessel and the degradation of magnetic field decay index n, leading to high growth rates of positional instability. For a slightly elongated configuration (n=-0.9), the asymmetry of attractive forces on the toroidal plasma plays a dominant role in the VDE mechanism. For a more elongated configuration (n=-1.7), the degradation of field decay index n plays an important role on VDEs, in addition to the effect of asymmetric attractive forces. It is shown that the VDE characteristics of a highly elongated configuration with a rapid plasma current quench can be dominated by the field decay index degradation. It is also pointed out that both the softening of current quenches as was experimentally developed in the JT-60U tokamak, and the optimization of the allowable elongation of the plasma cross-section are critical issues in the development of a general control strategy of discharge termination


Fusion Engineering and Design | 2001

Simulation studies of plasma shape identification and control in Korea Superconducting Tokamak Advanced Research

Hogun Jhang; C. Kessel; N. Pomphrey; Jin-Yong Kim; Stephen C. Jardin; G.S. Lee

Simulation studies of plasma shape identification and shape control for the proposed Korea superconducting tokamak advanced research (KSTAR) are described. It is shown that the total number of magnetic measurements can be effectively reduced by considering the patterns of magnetic flux and fields, generated by plasma, along a prescribed measurement contour. The effect of eddy currents on shape identification is investigated in dynamic simulations. The isoflux control scheme and a standard PID control law are adopted for the development of a model shape control system. It is shown that appropriate weighting factors of poloidal field coils, incorporating the efficacy of each coil to a shape control point, can significantly reduce the total feedback power required for a shape control action. Finally, a shape control simulation using calculated flux errors, which correspond to a more realistic experimental situation, is presented.


Physics of Plasmas | 1999

Physics of compact stellarators

S.P. Hirshman; Donald A. Spong; J.C. Whitson; B. E. Nelson; D. B. Batchelor; James F. Lyon; Raul Sanchez; A. Brooks; G. Y. Fu; R.J. Goldston; L. P. Ku; D.A. Monticello; H. Mynick; G.H. Neilson; N. Pomphrey; M. H. Redi; W. Reiersen; A. Reiman; J. Schmidt; R. B. White; M. C. Zarnstorff; W. H. Miner; Prashant M. Valanju; Allen H. Boozer

Recent progress in the theoretical understanding and design of compact stellarators is described. Hybrid devices, which depart from canonical stellarators by deriving benefits from the bootstrap current which flows at finite beta, comprise a class of low aspect ratio A<4 stellarators. They possess external kink stability (at moderate beta) in the absence of a conducting wall, possible immunity to disruptions through external control of the transform and magnetic shear, and they achieve volume-averaged ballooning beta limits (4%–6%) similar to those in tokamaks. In addition, bootstrap currents can reduce the effects of magnetic islands (self-healing effect) and lead to simpler stellarator coils by reducing the required external transform. Powerful physics and coil optimization codes have been developed and integrated to design experiments aimed at exploring compact stellarators. The physics basis for designing the national compact stellarator will be discussed.

Collaboration


Dive into the N. Pomphrey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen C. Jardin

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

S.P. Hirshman

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

G.H. Neilson

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. C. Zarnstorff

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

W. Reiersen

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

H. Mynick

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. Manickam

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. Brooks

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

S.M. Kaye

Princeton Plasma Physics Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge