Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where N. Roddis is active.

Publication


Featured researches published by N. Roddis.


IEEE Transactions on Applied Superconductivity | 2005

HTS narrow band filters at UHF band for radio astronomy applications

Jiafeng Zhou; Michael J. Lancaster; Frederick Huang; N. Roddis; Dave Glynn

High performance narrow-band High-Temperature Superconductor (HTS) filters at 610 MHz with very sharp cut-off response and low loss are needed for improving the observation of pulsars at the Jodrell Bank Observatory, UK. An eight-pole quasi-elliptic HTS filter using compact resonators has been designed for this purpose. The measured response of filter has an insertion loss of 0.3 dB (including a 0.2 dB ripple), and a return loss of 15 dB in the passband. Two transmission zeroes are realized to improve the steepness of the cut-off. The lowest harmonic is designed to appear at 1.79 GHz, about three times the center frequency. The out-of-band rejection is better than 85 dB up to this harmonic. The filter has been tested in the observatory with excellent results.


european microwave conference | 2005

Very low-noise differential radiometer at 30 GHz for the PLANCK LFI

B. Aja; E. Artal; L. de la Fuente; J. P. Pascual; A. Mediavilla; N. Roddis; D. Kettle; W.F. Winder; L.Pi. Cara; P. de Paco

The PLANCK mission of the European Space Agency is devoted to produce sky maps of the cosmic microwave background radiation. The low-frequency instrument is a wide-band cryogenic microwave radiometer array operating at 30, 44, and 70 GHz. The design, test techniques, and performance of the complete differential radiometer at 30 GHz are presented. This elegant breadboard 30-GHz radiometer is composed of a front-end module (FEM) assembled at the Jodrell Bank Observatory, Cheshire, U.K., and a back-end module assembled at the Universidad de Cantabria, Cantabria, Spain, and Telecomunicacio/spl acute/, Universitat Polite/spl acute/cnica de Catalunya, Barcelona, Spain. The system noise temperature was excellent, mainly due to the very low noise performance of the FEM amplifiers, which achieved an average noise temperature of 9.4 K.


Astronomy and Astrophysics | 2010

Planck pre-launch status: Low Frequency Instrument calibration and expected scientific performance

A. Mennella; M. Bersanelli; R. C. Butler; F. Cuttaia; O. D'Arcangelo; R. J. Davis; M. Frailis; S. Galeotta; A. Gregorio; C. R. Lawrence; R. Leonardi; S. R. Lowe; Nazzareno Mandolesi; M. Maris; P. R. Meinhold; L. Mendes; G. Morgante; M. Sandri; L. Stringhetti; L. Terenzi; M. Tomasi; L. Valenziano; F. Villa; A. Zacchei; A. Zonca; M. Balasini; C. Franceschet; P. Battaglia; P. M. Lapolla; P. Leutenegger

We present the calibration and scientific performance parameters of the Planck Low Frequency Instrument (LFI) measured during the ground cryogenic test campaign. These parameters characterise the instrument response and constitute our optimal pre-launch knowledge of the LFI scientific performance. The LFI shows excellent 1/f stability and rejection of instrumental systematic effects; its measured noise performance shows that LFI is the most sensitive instrument of its kind. The calibration parameters will be updated during flight operations until the end of the mission.


Journal of Instrumentation | 2009

Design, development and verification of the 30 and 44 GHz front-end modules for the Planck Low Frequency Instrument

R. J. Davis; A. Wilkinson; R D Davies; W F Winder; N. Roddis; E. Blackhurst; D Lawson; S. R. Lowe; C Baines; M Butlin; A Galtress; D Shepherd; B. Aja; E. Artal; M. Bersanelli; R. C. Butler; C Castelli; F. Cuttaia; O. D'Arcangelo; T. Gaier; R. Hoyland; D. Kettle; R. Leonardi; Nazzareno Mandolesi; A. Mennella; P. R. Meinhold; M Pospieszalski; L. Stringhetti; M. Tomasi; L. Valenziano

We give a description of the design, construction and testing of the 30 and 44 GHz Front End Modules (FEMs) for the Low Frequency Instrument (LFI) of the Planck mission to be launched in 2009. The scientific requirements of the mission determine the performance parameters to be met by the FEMs, including their linear polarization characteristics. The FEM design is that of a differential pseudo-correlation radiometer in which the signal from the sky is compared with a 4-K blackbody load. The Low Noise Amplifier (LNA) at the heart of the FEM is based on indium phosphide High Electron Mobility Transistors (HEMTs). The radiometer incorporates a novel phase-switch design which gives excellent amplitude and phase match across the band. The noise temperature requirements are met within the measurement errors at the two frequencies. For the most sensitive LNAs, the noise temperature at the band centre is 3 and 5 times the quantum limit at 30 and 44 GHz respectively. For some of the FEMs, the noise temperature is still falling as the ambient temperature is reduced to 20 K. Stability tests of the FEMs, including a measurement of the 1/f knee frequency, also meet mission requirements. The 30 and 44 GHz FEMs have met or bettered the mission requirements in all critical aspects. The most sensitive LNAs have reached new limits of noise temperature for HEMTs at their band centres. The FEMs have well-defined linear polarization characteristcs.


Journal of Instrumentation | 2009

Noise properties of the Planck-LFI receivers

P. R. Meinhold; R. Leonardi; B. Aja; E. Artal; P. Battaglia; M. Bersanelli; E. Blackhurst; C. R. Butler; L. P. Cuevas; F. Cuttaia; O. D'Arcangelo; R. Davis; M. L. de la Fuente; M. Frailis; C. Franceschet; E. Franceschi; T. Gaier; S. Galeotta; A. Gregorio; R. Hoyland; N. Hughes; P. Jukkala; D. Kettle; M. Laaninen; P. Leutenegger; S. R. Lowe; M. Malaspina; R. Mandolesi; M. Maris; E. Martínez-González

The Planck Low Frequency Instrument (LFI) radiometers have been tested extensively during several dedicated campaigns. The present paper reports the principal noise properties of the LFI radiometers. A brief description of the LFI radiometers is given along with details of the test campaigns relevant to determination of noise properties. Current estimates of flight sensitivities, 1/f parameters, and noise effective bandwidths are presented. The LFI receivers exhibit exceptional 1/f noise, and their white noise performance is sufficient for the science goals of Planck.


Journal of Instrumentation | 2009

LFI 30 and 44 GHz receivers Back-End Modules

E. Artal; B. Aja; M. L. de la Fuente; J. P. Pascual; A. Mediavilla; E. Martínez-González; L. Pradell; P. de Paco; M. Bara; E. Blanco; E. Garcia; R. J. Davis; D. Kettle; N. Roddis; A. Wilkinson; M. Bersanelli; A. Mennella; M. Tomasi; R. C. Butler; F. Cuttaia; N. Mandolesi; L. Stringhetti

The 30 and 44 GHz Back End Modules (BEM) for the Planck Low Frequency Instrument are broadband receivers (20% relative bandwidth) working at room temperature. The signals coming from the Front End Module are amplified, band pass filtered and finally converted to DC by a detector diode. Each receiver has two identical branches following the differential scheme of the Planck radiometers. The BEM design is based on MMIC Low Noise Amplifiers using GaAs P-HEMT devices, microstrip filters and Schottky diode detectors. Their manufacturing development has included elegant breadboard prototypes and finally qualification and flight model units. Electrical, mechanical and environmental tests were carried out for the characterization and verification of the manufactured BEMs. A description of the 30 and 44 GHz Back End Modules of Planck-LFI radiometers is given, with details of the tests done to determine their electrical and environmental performances. The electrical performances of the 30 and 44 GHz Back End Modules: frequency response, effective bandwidth, equivalent noise temperature, 1/f noise and linearity are presented.


Journal of Instrumentation | 2009

The linearity response of the Planck-LFI flight model receivers

A. Mennella; F. Villa; L. Terenzi; F. Cuttaia; P. Battaglia; M. Bersanelli; R. C. Butler; O. D'Arcangelo; E. Artal; R. J. Davis; M. Frailis; C. Franceschet; S. Galeotta; A. Gregorio; N. Hughes; P. Jukkala; D. Kettle; V. H. Kilpiä; M. Laaninen; P. M. Lapolla; R. Leonardi; P. Leutenegger; S. R. Lowe; Nazzareno Mandolesi; M. Maris; P. R. Meinhold; L. Mendes; M. Miccolis; G. Morgante; N. Roddis

In this paper we discuss the linearity response of the Planck-LFI receivers, with particular reference to signal compression measured on the 30 and 44 GHz channels. In the article we discuss the various sources of compression and present a model that accurately describes data measured during tests performed with individual radiomeric chains. After discussing test results we present the best parameter set representing the receiver response and discuss the impact of non linearity on in-flight calibration, which is shown to be negligible.


Journal of Instrumentation | 2009

Planck-LFI radiometers tuning

F. Cuttaia; A. Mennella; L. Stringhetti; M. Maris; L. Terenzi; M. Tomasi; F. Villa; M. Bersanelli; R. C. Butler; B Cappellini; L. P. Cuevas; O. D'Arcangelo; R. J. Davis; M. Frailis; C. Franceschet; E. Franceschi; A. Gregorio; R Hoyland; R. Leonardi; S. R. Lowe; Nazzareno Mandolesi; P. R. Meinhold; L. Mendes; N. Roddis; M. Sandri; L. Valenziano; A. Wilkinson; A. Zacchei; A. Zonca; P. Battaglia

This paper describes the Planck Low Frequency Instrument tuning activities performed through the ground test campaigns, from Unit to Satellite Levels. Tuning is key to achieve the best possible instrument performance and tuning parameters strongly depend on thermal and electrical conditions. For this reason tuning has been repeated several times during ground tests and it has been repeated in flight before starting nominal operations. The paper discusses the tuning philosophy, the activities and the obtained results, highlighting developments and changes occurred during test campaigns. The paper concludes with an overview of tuning performed during the satellite cryogenic test campaign (Summer 2008) and of the plans for the just started in-flight calibration.


european microwave conference | 2006

Wideband Microtrip Bandpass Filters for Radio Astronomy Applications

Guoyong Zhang; Michael J. Lancaster; Frederick Huang; Yejie Pan; N. Roddis

This paper presents wideband bandpass filters with a novel microstrip configuration. Using quarter-wavelength resonators, internal coupling between resonators was realized by interdigital capacitors (IDC) and capacitive open-ended stubs. Impedance steps, was utilized for external couplings. Two wideband filters at L band and C band with a fractional bandwidth (FBW) of 48% and 76%, respectively, were demonstrated as the concept for use in e-MERLIN receivers of radio astronomy applications. The measurement performance agrees well with the simulation


Journal of Instrumentation | 2009

Thermal susceptibility of the Planck-LFI receivers

L. Terenzi; Mj Salmon; A Colin; A. Mennella; G. Morgante; M. Tomasi; P. Battaglia; M Lapolla; M. Bersanelli; Rc Butler; F. Cuttaia; O. D'Arcangelo; R. J. Davis; C. Franceschet; S. Galeotta; A. Gregorio; N. Hughes; P. Jukkala; D. Kettle; M. Laaninen; P. Leutenegger; R. Leonardi; Nazzareno Mandolesi; M. Maris; P. R. Meinhold; M. Miccolis; N. Roddis; L Sambo; M. Sandri; R. Silvestri

This paper describes the impact of the Planck Low Frequency Instrument front end physical temperature fluctuations on the output signal. The origin of thermal instabilities in the instrument are discussed, and an analytical model of their propagation and impact on the receivers signal is described. The experimental test setup dedicated to evaluate these effects during the instrument ground calibration is reported together with data analysis methods. Finally, main results obtained are discussed and compared to the requirements.

Collaboration


Dive into the N. Roddis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Kettle

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Aja

University of Cantabria

View shared research outputs
Top Co-Authors

Avatar

R. J. Davis

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

P. R. Meinhold

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge