N. Rowell
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N. Rowell.
Astronomy and Astrophysics | 2018
Lennart Lindegren; Jonay I. González Hernández; A. Bombrun; Sergei A. Klioner; U. Bastian; M. Ramos-Lerate; A. De Torres; H. Steidelmüller; C. Stephenson; David Hobbs; Uwe Lammers; M. Biermann; R. Geyer; T. Hilger; Daniel Michalik; U. Stampa; Paul J. McMillan; J. Castañeda; M. Clotet; G. Comoretto; M. Davidson; C. Fabricius; G. Gracia; Nigel Hambly; A. Hutton; André Mora; J. Portell; F. van Leeuwen; U. Abbas; A. Abreu
Context. Gaia Data Release 2 (Gaia DR2) contains results for 1693 million sources in the magnitude range 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 22 months of its operational phase. Aims. We describe the input data, models, and processing used for the astrometric content of Gaia DR2, and the validation of these resultsperformed within the astrometry task. Methods. Some 320 billion centroid positions from the pre-processed astrometric CCD observations were used to estimate the five astrometric parameters (positions, parallaxes, and proper motions) for 1332 million sources, and approximate positions at the reference epoch J2015.5 for an additional 361 million mostly faint sources. These data were calculated in two steps. First, the satellite attitude and the astrometric calibration parameters of the CCDs were obtained in an astrometric global iterative solution for 16 million selected sources, using about 1% of the input data. This primary solution was tied to the extragalactic International Celestial Reference System (ICRS) by means of quasars. The resulting attitude and calibration were then used to calculate the astrometric parameters of all the sources. Special validation solutions were used to characterise the random and systematic errors in parallax and proper motion. Results. For the sources with five-parameter astrometric solutions, the median uncertainty in parallax and position at the reference epoch J2015.5 is about 0.04 mas for bright (G < 14 mag) sources, 0.1 mas at G = 17 mag, and 0.7 masat G = 20 mag. In the proper motion components the corresponding uncertainties are 0.05, 0.2, and 1.2 mas yr−1, respectively.The optical reference frame defined by Gaia DR2 is aligned with ICRS and is non-rotating with respect to the quasars to within 0.15 mas yr−1. From the quasars and validation solutions we estimate that systematics in the parallaxes depending on position, magnitude, and colour are generally below 0.1 mas, but the parallaxes are on the whole too small by about 0.03 mas. Significant spatial correlations of up to 0.04 mas in parallax and 0.07 mas yr−1 in proper motion are seen on small (< 1 deg) and intermediate (20 deg) angular scales. Important statistics and information for the users of the Gaia DR2 astrometry are given in the appendices.
Astronomy and Astrophysics | 2017
F. van Leeuwen; D. W. Evans; F. De Angeli; C. Jordi; G. Busso; Carla Cacciari; M. Riello; E. Pancino; Giuseppe Altavilla; A. G. A. Brown; P. Burgess; J. M. Carrasco; G. Cocozza; S. Cowell; M. Davidson; F. De Luise; C. Fabricius; S. Galleti; G. Gilmore; G. Giuffrida; Nigel Hambly; D. Harrison; Simon T. Hodgkin; G. Holland; I. Macdonald; S. Marinoni; P. Montegriffo; P. Osborne; S. Ragaini; P. J. Richards
Context. This paper presents an overview of the photometric data that are part of the first Gaia data release. Aims. The principles of the processing and the main characteristics of the Gaia photometric data are presented. Methods. The calibration strategy is outlined briefly and the main properties of the resulting photometry are presented. Results. Relations with other broadband photometric systems are provided. The overall precision for the Gaia photometry is shown to be at the milli-magnitude level and has a clear potential to improve further in future releases.
Monthly Notices of the Royal Astronomical Society | 2013
N. Rowell
The termination in the white dwarf luminosity function is a standard diagnostic tool for measuring the total age of nearby stellar populations. In this paper, an algorithm is presented for inverting the full white dwarf luminosity function to obtain a maximum likelihood estimate of the time varying star formation rate of the host stellar population. Tests with synthetic data demonstrate that the algorithm converges over a wide class of underlying star formation rate forms. The algorithm successfully estimates the moving average star formation rate as a function of lookback time in the presence of realistic measurement noise, though suffers from degeneracies around discontinuities in the underlying star formation rate. The inversion results are most sensitive to the choice of white dwarf cooling models, with the models produced by different groups giving quite different results. The results are relatively insensitive to the progenitor metallicity, initial mass function, initial-final mass relation and ratio of H/He atmosphere white dwarfs. Application to two independent determinations of the Solar neighbourhood white dwarf luminosity function gives similar results. The star formation rate has a bimodal form, with broad peaks at 2-3 Gyr and 7-9 Gyr in the past, separated by a significant lull of magnitude 30-90% depending on choice of cooling models. The onset of star formation occurs around 8-10 Gyr ago. The total integrated star formation rate is ~0.014 stars/pc3 in the Solar neighbourhood, for stars more massive than 0.6M_{solar}.
Monthly Notices of the Royal Astronomical Society | 2015
Marco C. Lam; N. Rowell; Nigel Hambly
The traditional Schmidt density estimator has been proven to be unbiased and effective in a magnitude-limited sample. Previously, efforts have been made to generalize it for populations with non-uniform density and proper motion-limited cases. This work shows that the then-good assumptions for a proper motion-limited sample are no longer sufficient to cope with modern data. Populations with larger differences in the kinematics as compared to the local standard of rest are most severely affected. We show that this systematic bias can be removed by treating the discovery fraction inseparable from the generalized maximum volume integrand. The treatment can be applied to any proper motion-limited sample with good knowledge of the kinematics. This work demonstrates the method through application to a mock catalogue of a white dwarf-only solar neighbourhood for various scenarios and compared against the traditional treatment using a survey with Pan-STARRS-like characteristics.
IEEE Transactions on Aerospace and Electronic Systems | 2013
N. Rowell; Steve Parkes; Martin Dunstan
A feature tracking algorithm is described, which is designed to support optical navigation of autonomous spacecraft. The algorithm is based on an existing system designed for use in planetary entry, descent, and landing (EDL) scenarios and includes several extra processing steps aimed at improving the performance. The algorithm is tested against the original by processing synthetic image streams of an asteroid and a lunar-type surface, taking care to use realistic surface reflectance models. The tracked features are processed to extract estimates of the camera motion between frames, and the results are compared with the ground truth to assess the robustness and accuracy of the feature tracking.
Monthly Notices of the Royal Astronomical Society | 2018
Mukremin Kilic; Nigel Hambly; P. Bergeron; C. Genest-Beaulieu; N. Rowell
We use Gaia Data Release 2 to identify 13,928 white dwarfs within 100 pc of the Sun. The exquisite astrometry from Gaia reveals for the first time a bifurcation in the observed white dwarf sequence in both Gaia and the Sloan Digital Sky Survey (SDSS) passbands. The latter is easily explained by a helium atmosphere white dwarf fraction of 36%. However, the bifurcation in the Gaia colour-magnitude diagram depends on both the atmospheric composition and the mass distribution. We simulate theoretical colour-magnitude diagrams for single and binary white dwarfs using a population synthesis approach and demonstrate that there is a significant contribution from relatively massive white dwarfs that likely formed through mergers. These include white dwarf remnants of main-sequence (blue stragglers) and post-main sequence mergers. The mass distribution of the SDSS subsample, including the spectroscopically confirmed white dwarfs, also shows this massive bump. This is the first direct detection of such a population in a volume-limited sample.
IEEE Computer Graphics and Applications | 2014
I. W. Martin; Steve Parkes; Martin Dunstan; N. Rowell
Spacecraft exploration of asteroids presents autonomous-navigation challenges that can be aided by virtual models to test and develop guidance and hazard-avoidance systems. Researchers have extended and applied graphics techniques to create high-resolution asteroid models to simulate cameras and other spacecraft sensors approaching and descending toward asteroids. A scalable model structure with evenly spaced vertices simplifies terrain modeling, avoids distortion at the poles, and enables triangle-strip definition for efficient rendering. To create the base asteroid models, this approach uses two-phase Poisson faulting and Perlin noise. It creates realistic asteroid surfaces by adding both crater models adapted from lunar terrain simulation and multiresolution boulders. The researchers evaluated the virtual asteroids by comparing them with real asteroid images, examining the slope distributions, and applying a surface-relative feature-tracking algorithm to the models.
arXiv: Solar and Stellar Astrophysics | 2009
N. Rowell; Nigel Hambly; P. Bergeron
We present the techniques and early results of our program to measure the luminosity function for White Dwarfs in the SuperCOSMOS Sky Survey. Our survey covers over three quarters of the sky to a mean depth of I~19.2, and finds ~9,500 Galactic disk WD candidates on applying a conservative lower tangential velocity cut of 30kms^-1. Novel techniques introduced in this survey include allowing the lower proper motion limit to vary according to apparent magnitude, fully exploiting the accuracy of proper motion measurements to increase the sample size. Our luminosity function shows good agreement with that measured in similar works. We find a pronounced drop in the local number density of WDs at a M_bol~15.75, and an inflexion in the luminosity function at M_bol~12.
Monthly Notices of the Royal Astronomical Society | 2019
Mukremin Kilic; P. Bergeron; Kyra Dame; Nigel Hambly; N. Rowell; Courtney L. Crawford
We use 156 044 white dwarf candidates with
Monthly Notices of the Royal Astronomical Society | 2019
Marco C. Lam; Nigel Hambly; N. Rowell; K. C. Chambers; Klaus W. Hodapp; N. Kaiser; Rolf-Peter Kudritzki; E. A. Magnier; John L. Tonry; R. J. Wainscoat; C. Waters
\geq5\sigma