N.S. Pechurkin
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N.S. Pechurkin.
Aquatic Ecology | 2002
T. I. Lobova; E.Ye. Maksimova; L.Yu Popova; N.S. Pechurkin
From 1996 to 1999 heterotrophic bacteria of the brackish-water Lake Shira (Republic of Khakasia, Russia) were studied to understand the seasonal dynamics of their antibiotic resistance. During the winter, these bacteria were represented primarily by forms that could not be cultured and were psychrotolerant. In the summer period, heterotrophic, mesophilic bacteria increased in number. The percentages of isolates with multiple, antibiotic resistance isolated from the lake region near the resort area of the lake were 2–3 times higher than those from the central part of the lake. A decline in the bacterial numbers with multiple antibiotic resistance was observed during the cold period (February–March). Various mechanisms of multiple, antibiotic resistance of heterotrophic bacteria isolated from Shira lake are discussed.
Advances in Space Research | 1999
N.S. Pechurkin; Bril'kov Av; Vitaly V. Ganusov; T. V. Kargatova; Maksimova Ee; L. Yu. Popova
The possibility of introducing genetically engineered microorganisms (GEM) into simple biotic cycles of laboratory water microcosms was investigated. The survival of the recombinant strain Escherichia coli Z905 (Apr, Lux+) in microcosms depends on the type of model ecosystems. During the absence of algae blooming in the model ecosystem, the part of plasmid-containing cells E. coli decreased fast, and the structure of the plasmid was also modified. In conditions of algae blooming (Ankistrodesmus sp.) an almost total maintenance of plasmid-containing cells was observed in E. coli population. A mathematics model of GEMs behavior in water ecosystems with different level of complexity has been formulated. Mechanisms causing the difference in luminescent exhibition of different species are discussed, and attempts are made to forecast the GEMs behavior in water ecosystems.
Advances in Space Research | 1997
L.A. Somova; N.S. Pechurkin; V.I. Polonsky; T.I. Pisman; A.B. Sarangova; M. Andre; G.M. Sadovskaya
The effect has been studied of inoculation of seeds of wheat with two species of rhizospheric microorganisms--Pseudomonas fluorescens and Pseudomonas putida--on young plant growth with complete and with nitrogen deficit mineral nutrition. With complete mineral medium, plants grown from seeds inoculated with bacteria of Pseudomonas genus (experiment plants) have been found to have better growth over plants not inoculated with these bacteria (control plants). The experiment plants had increased transpiration and their biomass had higher organic nitrogen content. With nitrogen deficit medium, the plants inoculated with bacteria and those without them, have not revealed changes in growth. Neither case demonstrated competition of microorganisms with plants for nitrogen sources.
Advances in Space Research | 2003
T. V. Kargatova; A. N. Boyandin; L. Yu. Popova; N.S. Pechurkin
The processes resulting from the introduction of the tranagenic microorganism (TM) E. coli Z905/pPHL7 into aquatic microcosms have been modeled experimentally. It has been shown that the TM E. coli is able to adapt to a long co-existence with indigenous heterotrophic microflora in variously structured microcosms. In more complex microcosms the numerical dynamics of the introduced E. coli Z905/pPHL7 population is more stable. In the TM populations staying in the microcosms for a prolonged time, changes are recorded in the phenotypic expression of plasmid genes (ampicillin resistance and the luminescence level) and chromosome genes (morphological and physiological traits). However, in our study microcosms, the recombinant plasmid persisted in the TM cells for 6 years after the introduction, and as the population adapts to the conditions of the microcosms, the efficiency of the cloned gene expression in the cells is restored. In the microcosms with high microalgal counts (10(7) cells/ml), cells with a high threshold of sensitivity to ampicillin dominate in the population of the TM E. coli Z905/pPHL7.
Advances in Space Research | 2003
I.M. Shirobokova; N.S. Pechurkin
A mathematical model was used to investigate the effect of cannibalism intensity on the net primary production and the dynamics of trophic links in an aquatic ecosystem characterized by cannibalism at the upper trophic level. A mathematical model of an aquatic ecosystem has been constructed, with the following principal trophic links: limiting nutrient concentration, producers (phytoplankton), nonpredatory and predatory zooplankton. The model takes into account the age structure of the predator and includes two age groups (the young and adults). The adult predators are cannibals feeding on both nonpredatory zooplankton and their own young, which consume phytoplankton. It has been found that when cannibalism intensity increases above a certain level, the concentrations of both adults and the young of the predators decrease. At the same time, the concentrations of the nonpredatory zooplankton and of nutrients increase, while the biomass of producers decreases. When the cannibalism intensity is low, the net primary production of the system increases to a certain level correlated with the increase in cannibalism intensity and drops sharply when the level of consumption of young is high. There is an optimal intensity of cannibalism, at which the productivity in the photosynthesis link is maximal.
Advances in Space Research | 2001
I.M. Shirobokova; N.S. Pechurkin
A mathematical model was used to study the response of ecosystems of different structures to external impact. The response was measured as a sensitivity coefficient: the magnitude of the systems response vs. the change of the factor in the inflow. The formula has been obtained to calculate the sensitivity coefficient for ecosystems containing different numbers of trophic links. The derived sensitivity coefficients demonstrate that the degree of compensation for the external impact can differ depending on the type of system regulation and the length of the trophic chain. E. g. the sensitivity coefficient decreases with complexity of trophic links in an ecosystem for top-down controlled systems and impact of degree of openness on sensitivity e.g. closed ecosystems show higher sensitivity then fully open ecosystem to impacts also bottom-up control system show less sensitivity then top-down. Grant numbers: N99-04-96017, N25.
Advances in Space Research | 1999
T.I. Pisman; N.S. Pechurkin; T.S. Mariasova; L.A. Somova; A.B. Sarangova
A mathematical model concerning the interaction of plants and rhizospheric microorganisms on complete mineral medium and under nitrogen limitation has been constructed. The model takes into account the closeness of plants and microorganisms in terms of the matter released by the plant and consumed by the microorganisms. The effect of rhizospheric microorganisms on plant growth with normal carbon dioxide and complete mineral medium has been demonstrated. Plants interacting with microorganisms have a greater biomass than plants growing without microorganisms. Wheat growth stimulation by metabolites of rhizospheric microorganisms under laboratory conditions on artificial soil has been experimentally demonstrated (Pechurkin, 1997). Under nitrogen limitation, the biomass of plants, with or without microorganisms, is identical, and is substantially reduced as compared with the medium with standard nitrogen.
Advances in Space Research | 2001
L. Yu. Popova; T. I. Lobova; T. Yu. Krylova; T. V. Kargatova; Maksimova Ee; A. N. Boyandin; N.S. Pechurkin
The role of key environmental factors in adaptation of spore-forming and non-spore-forming transgenic microorganisms (TM) have been studied in model ecosystems. Model TM Escherichia coli Z905 (bearing plasmid genes of bacterial luminescence Ap (r) Lux+) has been found to have a higher adaptation potential than TM Bacillus subtilis 2335/105 (bearing genes of human alpha 2-interferon Km (r) Inf+), planned for employment as a living vaccine under varying environmental conditions. Effects of abiotic factors on migration of natural and recombinant plasmids between microorganisms under model ecosystem conditions has been estimated. The transgenic microorganisms with low copy number survived better under introduction conditions in the microcosms studied. This trend has been shown to be independent of the microcosm type and its complexity. Grant numbers: 99-04-96017, 25, 00-07-9011.
Microbiology | 2000
T. Yu. Krylova; L. Yu. Popova; N.S. Pechurkin; T. A. Kashperova; V. A. Belyavskaya
The population heterogeneity of recombinant and plasmid-freeBacillus subtilis strains introduced into aquatic microcosms was studied. After introduction, the population of the plasmid-free strainB. subtilis 2335 in microcosms has long been represented by both vegetative cells and spores, whereas, already ten days after introduction, the population of the recombinant strainB. subtilis 2335/105 (KmrInf+) was represented only by spores. The number of plasmid copies in the spore isolates of the recombinant strain was the same as before introduction, but the plasmid abundance in the vegetative isolates of this strain decreased. The isolates ofB. subtilis 2335/105 obtained from microcosms and the variants of this strain obtained by ten successive subcultures on M9 and 0. I× M9 media with and without kanamycin (Km) differed in the number of plasmid copies, Km resistance, and maximum biomass yield during batch cultivation. Irrespective of the presence of Km, more than 50% of the variants subcultured on M9 medium showed reduced plasmid abundance. At the same time, about 70% of the variants subcultured on 0.1 × M9 medium with Km and 90% of the variants subcultured on the same medium without Km retained the initial number of plasmid copies. The variants subcultured on media with Km retained the initial biomass level. In more than 70% of the variants isolated from media without Km, the biomass yield increased.
Advances in Space Research | 2003
A. N. Boyandin; T. I. Lobova; L. Yu. Popova; N.S. Pechurkin
It has been demonstrated that the transgenic microorganism Escherichia coli Z905/pPHL7 (AprLux+) can exist for a long time at an elevated concentration of mineral salts. The microorganism was introduced into microcosms with sterile brackish water (salinity variable from 21 to 22 g l-1) taken from Lake Shira (Khakasia, Russia). The survival of the microorganism was estimated both by measuring the growth of the colonies on solid nutrient media and by the bioluminescence exhibited by the transgenic strain in samples from the microcosms and in the enrichment culture with the added selective factor-ampicillin (50 micrograms/ml). In the enrichment culture, the bioluminescent signal was registered through the 160-day experiment. It has been shown that in the closed microcosms with brackish water the E. coli strain becomes heterogeneous in its ampicillin resistance. The populations of the transgenic strain were mainly represented by isolates able to persist in the medium containing 50 micrograms/ml, but there were also the cells (about 10%) with the threshold of ampicillin resistance not more than 0.05 micrograms/ml. Thus, it was shown that in the microcosms with brackish water and in the absence of the selective factor the transgenic strain survives and retails the recombinant plasmid.