Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where N. Selvamurugan is active.

Publication


Featured researches published by N. Selvamurugan.


Gene | 2002

Parathyroid hormone-dependent signaling pathways regulating genes in bone cells

John T. Swarthout; Richard C. D'Alonzo; N. Selvamurugan; Nicola C. Partridge

Parathyroid hormone (PTH) is an 84-amino-acid polypeptide hormone functioning as a major mediator of bone remodeling and as an essential regulator of calcium homeostasis. PTH and PTH-related protein (PTHrP) indirectly activate osteoclasts resulting in increased bone resorption. During this process, PTH changes the phenotype of the osteoblast from a cell involved in bone formation to one directing bone resorption. In addition to these catabolic effects, PTH has been demonstrated to be an anabolic factor in skeletal tissue and in vitro. As a result, PTH has potential medical application to the treatment of osteoporosis, since intermittent administration of PTH stimulates bone formation. Activation of osteoblasts by PTH results in expression of genes important for the degradation of the extracellular matrix, production of growth factors, and stimulation and recruitment of osteoclasts. The ability of PTH to drive changes in gene expression is dependent upon activation of transcription factors such as the activator protein-1 family, RUNX2, and cAMP response element binding protein (CREB). Much of the regulation of these processes by PTH is protein kinase A (PKA)-dependent. However, while PKA is linked to many of the changes in gene expression directed by PTH, PKA activation has been shown to inhibit mitogen-activated protein kinase (MAPK) and proliferation of osteoblasts. It is now known that stimulation of MAPK and proliferation by PTH at low concentrations is protein kinase C (PKC)-dependent in both osteoblastic and kidney cells. Furthermore, PTH has been demonstrated to regulate components of the cell cycle. However, whether this regulation requires PKC and/or extracellular signal-regulated kinases or whether PTH is able to stimulate other components of the cell cycle is unknown. It is possible that stimulation of this signaling pathway by PTH mediates a unique pattern of gene expression resulting in proliferation in osteoblastic and kidney cells; however, specific examples of this are still unknown. This review will focus on what is known about PTH-mediated cell signaling, and discuss the established or putative PTH-regulated pattern of gene expression in osteoblastic cells following treatment with catabolic (high) or anabolic (low) concentrations of the hormone.


International Journal of Biological Macromolecules | 2010

Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering.

Maddela Swetha; Kolli Sahithi; A. Moorthi; N. Srinivasan; Kumarasamy Ramasamy; N. Selvamurugan

Bone tissue engineering is an alternative strategy to generate bone utilizing a combination of biomaterials and cells. Biomaterials that mimic the structure and composition of bone tissues at nanoscale are important for the development of bone tissue engineering applications. Natural or biopolymer-based composites containing chitin, chitosan, or collagen have advantages such as biocompatibility, biodegradability that are essential for bone tissue engineering. The inclusion of nanoparticles of hydroxyapatite (one of the most widely used bioceramic materials) into the biopolymer matrix improves the mechanical properties and incorporates the nanotopographic features that mimic the nanostructure of bone. This review summarizes the recent work on the development of biocomposites containing natural polymers with hydroxyapatite particles suitable for use in bone defects/bone regeneration.


Journal of Biological Chemistry | 1998

Parathyroid Hormone Regulates the Rat Collagenase-3 Promoter in Osteoblastic Cells through the Cooperative Interaction of the Activator Protein-1 Site and the runt Domain Binding Sequence

N. Selvamurugan; Wan Yin Chou; A. Terrece Pearman; Malini R. Pulumati; Nicola C. Partridge

Parathyroid hormone induces collagenase-3 gene transcription in rat osteoblastic cells. Here, we characterized the basal, parathyroid hormone regulatory regions of the rat collagenase-3 gene and the proteins involved in this regulation. The minimal parathyroid hormone-responsive region was observed to be between base pairs −38 and −148. Deleted and mutated constructs showed that the activator protein-1 and the runt domain binding sites are both required for basal expression and parathyroid hormone activation of this gene. The runt domain site is identical to an osteoblast-specific element-2 or acute myelogenous leukemia binding sequence in the mouse and rat osteocalcin genes, respectively. Overexpression of an acute myelogenous leukemia-1 repressor protein inhibited parathyroid hormone activation of the promoter, indicating a requirement of acute myelogenous leukemia-related factor(s) for this activity. Overexpression of c-Fos, c-Jun, osteoblast-specific factor-2, and core binding factor-β increased the response to parathyroid hormone of the wild type (−148) promoter but not with mutation of either or both the activator protein-1 and runt domain binding sites. In summary, we conclude that there is a cooperative interaction of acute myelogenous leukemia/polyomavirus enhancer-binding protein-2-related factor(s) binding to the runt domain binding site with members of the activator protein-1 transcription factor family binding to the activator protein-1 site in the rat collagenase-3 gene in response to parathyroid hormone in osteoblastic cells.


International Journal of Biological Macromolecules | 2011

Chitosan and its derivatives for gene delivery.

Saranya N; A. Moorthi; S. Saravanan; M. Pandima Devi; N. Selvamurugan

Gene delivery can particularly be used for the treatment of diseases by the insertion of genetic materials (DNA and RNA) into mammalian cells either to express new proteins or to prevent the expression of existing proteins. Chitosan, a natural polymer is nontoxic, biocompatible, and biodegradable and it is used as a support material for gene delivery. However, practical use of chitosan has been mainly limited to its unmodified forms, and thus modified chitosans can be used for the wide range of biomedical applications including the interaction and intracellular delivery of genetic materials. In this context, this review paper provides the recent development on chitosan derivatives available for gene delivery.


International Journal of Biological Macromolecules | 2011

Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering

S. Saravanan; Sricharan Nethala; Soumitri Pattnaik; Anjali Tripathi; A. Moorthi; N. Selvamurugan

In this study, a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver particles (CS/nHAp/nAg) was developed by freeze drying technique, followed by introduction of silver ions in controlled amount through reduction phenomenon by functional groups of chitosan. The scaffolds were characterized using SEM, FT-IR, XRD, swelling, and biodegradation studies. The testing of the prepared scaffolds with Gram-positive and Gram-negative bacterial strains showed antibacterial activity. The scaffold materials were also found to be non-toxic to rat osteoprogenitor cells and human osteosarcoma cell line. Thus, these results suggested that CS/nHAp/nAg bio-composite scaffolds have the potential in controlling implant associated bacterial infection during reconstructive surgery of bone.


International Journal of Biological Macromolecules | 2009

Wet chemical synthesis of chitosan hydrogel–hydroxyapatite composite membranes for tissue engineering applications

K. Madhumathi; K.T. Shalumon; V.V. Divya Rani; Hiroshi Tamura; Tetsuya Furuike; N. Selvamurugan; Shantikumar V. Nair; R. Jayakumar

Chitosan, a deacetylated derivative of chitin is a commonly studied biomaterial for tissue-engineering applications due to its biocompatibility, biodegradability, low toxicity, antibacterial activity, wound healing ability and haemostatic properties. However, chitosan has poor mechanical strength due to which its applications in orthopedics are limited. Hydroxyapatite (HAp) is a natural inorganic component of bone and teeth and has mechanical strength and osteoconductive property. In this work, HAp was deposited on the surface of chitosan hydrogel membranes by a wet chemical synthesis method by alternatively soaking the membranes in CaCl(2) (pH 7.4) and Na(2)HPO(4) solutions for different time intervals. These chitosan hydrogel-HAp membranes were characterized using SEM, AFM, EDS, FT-IR and XRD analyses. MTT assay was done to evaluate the biocompatibility of these membranes using MG-63 osteosarcoma cells. The biocompatibility studies suggest that chitosan hydrogel-HAp composite membranes can be useful for tissue-engineering applications.


Colloids and Surfaces B: Biointerfaces | 2013

Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering.

J.A. Sowjanya; J. Singh; T. Mohita; S. Sarvanan; A. Moorthi; N. Srinivasan; N. Selvamurugan

Bone tissue engineering is a promising alternative method for treating bone loss by a combination of biomaterials and cells. In this study, we fabricated biocomposite scaffolds by blending chitosan (CS), alginate (Alg) and nano-silica (nSiO2), followed by freeze drying. The prepared scaffolds (CS/Alg, CS/Alg/nSiO2) were characterized by SEM, FT-IR and XRD analyses. In vitro studies such as swelling, biodegradation, biomineralization, protein adsorption and cytotoxicity were also carried out. The scaffolds possessed a well-defined porous architecture with pore sizes varying from 20 to 100 μm suitable for cell infiltration. The presence of nSiO2 in the scaffolds facilitated increased protein adsorption and controlled swelling ability. The scaffolds were biodegradable and the addition of nSiO2 improved apatite deposition on these scaffolds. There was no significant cytotoxicity effect of these CS/Alg/nSiO2 scaffolds towards osteolineage cells. Thus, these results indicate that CS/Alg/nSiO2 scaffolds may have potential applications for bone tissue engineering.


Carbohydrate Polymers | 2016

A review of chitosan and its derivatives in bone tissue engineering

R. LogithKumar; A. KeshavNarayan; S. Dhivya; A. Chawla; S. Saravanan; N. Selvamurugan

Critical-sized bone defects treated with biomaterials offer an efficient alternative to traditional methods involving surgical reconstruction, allografts, and metal implants. Chitosan, a natural biopolymer is widely studied for bone regeneration applications owing to its tunable chemical and biological properties. However, the potential of chitosan to repair bone defects is limited due to its water insolubility, faster in vivo depolymerization, hemo-incompatibility, and weak antimicrobial property. Functionalization of chitosan structure through various chemical modifications provides a solution to these limitations. In this review, current trends of using chitosan as a composite with other polymers and ceramics, and its modifications such as quaternization, carboxyalkylation, hydroxylation, phosphorylation, sulfation and copolymerization in bone tissue engineering are elaborated.


International Journal of Biological Macromolecules | 2008

Preparative methods of phosphorylated chitin and chitosan—An overview

R. Jayakumar; N. Selvamurugan; Shantikumar V. Nair; Seiichi Tokura; H.b Tamura

Biomaterials such as chitin, chitosan and their derivatives have a significant and rapid development in recent years. Chitin and chitosan have become cynosure of all party because of an unusual combination of biological activities plus mechanical and physical properties. However, the applications of chitin and chitosan are limited due to its insolubility in most of the solvents. The chemical modification of chitin and chitosan are keen interest because of these modifications would not change the fundamental skeleton of chitin and chitosan but would keep the original physicochemical and biochemical properties. They would also bring new or improved properties. The chemical modification of chitin and chitosan by phosphorylation is expected to be biocompatible and is able to promote tissue regeneration. In view of rapidly growing interest in chitin and chitosan and their chemical modified derivatives, we are here focusing the recent developments on preparation of phosphorylated chitin and chitosan in different methods.


International Journal of Biological Macromolecules | 2009

Preparation and characterization of novel β-chitin-hydroxyapatite composite membranes for tissue engineering applications

K. Madhumathi; N.S. Binulal; Hideaki Nagahama; H.b Tamura; K.T. Shalumon; N. Selvamurugan; Shantikumar V. Nair; R. Jayakumar

Beta-chitin is a biopolymer principally found in shells of squid pen. It has the properties of biodegradability, biocompatibility, chemical inertness, wound healing, antibacterial and anti-inflammatory activities. Hydroxyapatite (HAp) is a natural inorganic component of bone and teeth and has osteoconductive property. In this work, beta-chitin-HAp composite membranes were prepared by alternate soaking of beta-chitin membranes in CaCl2 (pH 7.4) and Na2HPO4 solutions for 2 h in each solution. After 1, 3 and 5 cycles of immersion, beta-chitin membranes were characterized using the SEM, FT-IR, EDS and XRD analyses. The results showed the presence of apatite layer on surface of beta-chitin membranes, and the amounts of size and deposition of apatite layers were increased with increasing number of immersion cycles. Human mesenchymal stem cells (hMSCs) were used for evaluation of the biocompatibility of pristine as well as composite membranes for tissue engineering applications. The presence of apatite layers on the surface of beta-chitin membranes increased the cell attachment and spreading suggesting that beta-chitin-HAp composite membranes can be used for tissue engineering applications.

Collaboration


Dive into the N. Selvamurugan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Jayakumar

Amrita Institute of Medical Sciences and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge