Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where N.T. Cable is active.

Publication


Featured researches published by N.T. Cable.


BMJ | 2007

Comparison of energy expenditure in adolescents when playing new generation and sedentary computer games: cross sectional study

Lee E. F. Graves; Gareth Stratton; Nicola D. Ridgers; N.T. Cable

Objective To compare the energy expenditure of adolescents when playing sedentary and new generation active computer games. Design Cross sectional comparison of four computer games. Setting Research laboratories. Participants Six boys and five girls aged 13-15 years. Procedure Participants were fitted with a monitoring device validated to predict energy expenditure. They played four computer games for 15 minutes each. One of the games was sedentary (XBOX 360) and the other three were active (Wii Sports). Main outcome measure Predicted energy expenditure, compared using repeated measures analysis of variance. Results Mean (standard deviation) predicted energy expenditure when playing Wii Sports bowling (190.6 (22.2) kJ/kg/min), tennis (202.5 (31.5) kJ/kg/min), and boxing (198.1 (33.9) kJ/kg/min) was significantly greater than when playing sedentary games (125.5 (13.7) kJ/kg/min) (P<0.001). Predicted energy expenditure was at least 65.1 (95% confidence interval 47.3 to 82.9) kJ/kg/min greater when playing active rather than sedentary games. Conclusions Playing new generation active computer games uses significantly more energy than playing sedentary computer games but not as much energy as playing the sport itself. The energy used when playing active Wii Sports games was not of high enough intensity to contribute towards the recommended daily amount of exercise in children.


Hypertension | 2010

Shear Stress Mediates Endothelial Adaptations to Exercise Training in Humans

Toni M. Tinken; Dick H. J. Thijssen; Nicola D. Hopkins; Ellen A. Dawson; N.T. Cable; Daniel J. Green

Although episodic changes in shear stress have been proposed as the mechanism responsible for the effects of exercise training on the vasculature, this hypothesis has not been directly addressed in humans. We examined brachial artery flow-mediated dilation, an index of NO-mediated endothelial function, in healthy men in response to an acute bout of handgrip exercise and across an 8-week period of bilateral handgrip training. Shear stress responses were attenuated in one arm by cuff inflation to 60 mm Hg. Similar increases were observed in grip strength and forearm volume and girth in both limbs. Acute bouts of handgrip exercise increased shear rate (P<0.005) and flow-mediated dilation percentage (P<0.05) in the uncuffed limb, whereas no changes were evident in the cuffed arm. Handgrip training increased flow-mediated dilation percentage in the noncuffed limb at weeks 2, 4, and 6 (P<0.001), whereas no changes were observed in the cuffed arm. Brachial artery peak reactive hyperemia, an index of resistance artery remodeling, progressively increased with training in the noncuffed limb (P<0.001 and 0.004); no changes were evident in the cuffed arm. Neither acute nor chronic shear manipulation during exercise influenced endothelium-independent glyceryl trinitrate responses. These results demonstrate that exercise-induced changes in shear provide the principal physiological stimulus to adaptation in flow-mediated endothelial function and vascular remodeling in response to exercise training in healthy humans.


Hypertension | 2011

Flow-Mediated Dilation and Cardiovascular Event Prediction: Does Nitric Oxide Matter?

Daniel J. Green; Helen Jones; Dick H. J. Thijssen; N.T. Cable; Greg Atkinson

Endothelial dysfunction is an early atherosclerotic event that precedes clinical symptoms and may also render established plaque vulnerable to rupture. Noninvasive assessment of endothelial function is commonly undertaken using the flow-mediated dilation (FMD) technique. Some studies indicate that FMD possesses independent prognostic value to predict future cardiovascular events that may exceed that associated with traditional risk factor assessment. It has been assumed that this association is related to the proposal that FMD provides an index of endothelium-derived nitric oxide (NO) function. Interestingly, placement of the occlusion cuff during the FMD procedure alters the shear stress stimulus and NO dependency of the resulting dilation: cuff placement distal to the imaged artery leads to a largely NO-mediated response, whereas proximal cuff placement leads to dilation which is less NO dependent. We used this physiological observation and the knowledge that prognostic studies have used both approaches to examine whether the prognostic capacity of FMD is related to its role as a putative index of NO function. In a meta-analysis of 14 studies (>8300 subjects), we found that FMD derived using a proximal cuff was at least as predictive as that derived using distal cuff placement, despite the latter being more NO dependent. This suggests that, whilst FMD is strongly predictive of future cardiovascular events, this may not solely be related to its assumed NO dependency. Although this finding should be confirmed with more and larger studies, we suggest that any direct measure of vascular (endothelial) function may provide independent prognostic information in humans.


Hypertension | 2009

Retrograde Flow and Shear Rate Acutely Impair Endothelial Function in Humans

Dick H. J. Thijssen; Ellen A. Dawson; Toni M. Tinken; N.T. Cable; Daniel J. Green

Changes in arterial shear stress induce functional and structural vasculature adaptations. Recent studies indicate that substantial retrograde flow and shear can occur through human conduit arteries. In animals, retrograde shear is associated with atherogenic effects. The aim of this study was to examine the impact of incremental levels of retrograde shear on endothelial function in vivo. On 3 separate days, we examined bilateral brachial artery flow-mediated dilation, an index of NO-mediated endothelial function, in healthy men (24±3 years) before and after a 30-minute intervention consisting of cuff inflation to 25, 50, or 75 mm Hg. Cuff inflations resulted in “dose”-dependent increases in retrograde shear rate, compared with the noncuffed arm, within subjects (P<0.001). Flow-mediated dilation in the cuffed arm did not change in response to the 25-mm Hg stimulus but decreased significantly after both the 50- and 75-mm Hg interventions (P<0.05). The decrease in flow-mediated dilation after the 75-mm Hg intervention was significantly larger than that observed after a 50-mm Hg intervention (P=0.03). In the noncuffed arm, no changes in shear rate or flow-mediated dilation were observed. These results demonstrate that an increase in retrograde shear rate induces a dose-dependent attenuation of endothelial function in humans. This finding contributes to our understanding regarding the possible detrimental effects of retrograde shear rate in vivo.


Hypertension | 2009

Impact of Shear Rate Modulation on Vascular Function in Humans

T.M. Tinken; Dick H. J. Thijssen; Nicola D. Hopkins; Mark A. Black; Ellen A. Dawson; Christopher T. Minson; Sean C. Newcomer; M.H. Laughlin; N.T. Cable; Daniel J. Green

Shear stress is an important stimulus to arterial adaptation in response to exercise and training in humans. We recently observed significant reverse arterial flow and shear during exercise and different antegrade/retrograde patterns of shear and flow in response to different types of exercise. The purpose of this study was to simultaneously examine flow-mediated dilation, a largely NO-mediated vasodilator response, in both brachial arteries of healthy young men before and after 30-minute interventions consisting of bilateral forearm heating, recumbent leg cycling, and bilateral handgrip exercise. During each intervention, a cuff inflated to 60 mm Hg was placed on 1 arm to unilaterally manipulate the shear rate stimulus. In the noncuffed arm, antegrade flow and shear increased similarly in response to each intervention (ANOVA; P<0.001, no interaction between interventions; P=0.71). Baseline flow-mediated dilation (4.6%, 6.9%, and 6.7%) increased similarly in response to heating, handgrip, and cycling (8.1%, 10.4%, and 8.9%, ANOVA; P<0.001, no interaction; P=0.89). In contrast, cuffed arm antegrade shear rate was lower than in the noncuffed arm for all of the conditions (P<0.05), and the increase in flow-mediated dilation was abolished in this arm (4.7%, 6.7%, and 6.1%; 2-way ANOVA: all conditions interacted P<0.05). These results suggest that differences in the magnitude of antegrade shear rate transduce differences in endothelial vasodilator function in humans, a finding that may have relevance for the impact of different exercise interventions on vascular adaptation in humans.


British Journal of Sports Medicine | 2002

Effects of resistance training and detraining on muscle strength and blood lipid profiles in postmenopausal women

Kirsty Elliott; Craig Sale; N.T. Cable

Objectives: To study the effects of eight weeks of supervised, low intensity resistance training (80% of 10 repetition maximum (10RM)) and eight weeks of detraining on muscle strength and blood lipid profiles in healthy, sedentary postmenopausal women. Subjects: Fifteen postmenopausal women, aged 49–62 years, took part in the study. Subjects were assigned to either a control (n = 7) or training (n = 8) group. The training regimen consisted of three sets of eight repetitions of leg press, bench press, knee extension, knee flexion, and lat pull-down, three days a week at 80% of 10RM. Dynamic leg strength, 10RM, and blood lipid profiles (total cholesterol (TC), low and high density lipoprotein cholesterol (LDL-C, HDL-C), triglycerides, and very low density lipoprotein cholesterol (VLDL-C)) were measured at baseline, after eight weeks of training, and after a further eight weeks of detraining. Results: Eight weeks of resistance training produced significant increases in knee extension (F1,13 = 12.60; p<0.01), bench press (F1,13 = 13.79; p<0.01), leg press (F1,13 = 15.65; p<0.01), and lat pull-down (F1,13 = 16.60; p<0.005) 10RM strength tests. Although 10RM strength decreased after eight weeks of detraining, the results remained significantly elevated from baseline measures. Eight weeks of training did not result in any significant alterations in blood lipid profiles, body composition, or dynamic isokinetic leg strength. There were no significant differences in any of the variables investigated over the 16 week period in the control group. Conclusions: These data suggest that a short, low intensity resistance training programme produces substantial improvements in muscle strength. Training of this intensity and duration was not sufficient to produce significant alterations in blood lipid concentrations.


Experimental Physiology | 2011

Exercise and vascular adaptation in asymptomatic humans

Daniel J. Green; Angela L. Spence; John R. Halliwill; N.T. Cable; Dick H. J. Thijssen

Beneficial effects of exercise training on the vasculature have been consistently reported in subjects with cardiovascular risk factors or disease, whereas studies in apparently healthy subjects have been less uniform. In this review, we examine evidence pertaining to the impact of exercise training on conduit and resistance vessel function and structure in asymptomatic subjects. Studies of arterial function in vivo have mainly focused on the endothelial nitric oxide dilator system, which has generally been shown to improve following training. Some evidence suggests that the magnitude of benefit depends upon the intensity or volume of training and the relative impact of exercise on upregulation of dilator pathways versus effects of inflammation and/or oxidation. Favourable effects of training on autonomic balance, baroreflex function and brainstem modulation of sympathetic control have been reported, but there is also evidence that basal vasoconstrictor tone increases as a result of training such that improvements in intrinsic vasodilator function and arterial remodelling are counterbalanced at rest. Studies of compliance suggest increases in both the arterial and the venous sides of the circulation, particularly in older subjects. In terms of mechanisms, shear stress appears to be a key signal to improvement in vascular function, whilst increases in pulse pressure and associated haemodynamics during bouts of exercise may transduce vascular adaptation, even in vascular beds which are distant from the active muscle. Different exercise modalities are associated with idiosyncratic patterns of blood flow and shear stress, and this may have some impact on the magnitude of exercise training effects on arterial function and remodelling. Other studies support the theory that that there may be different time course effects of training on specific vasodilator and constrictor pathways. A new era of understanding of the direct impacts of exercise and training on the vasculature is evolving, and future studies will benefit greatly from technological advances which allow direct characterization of arterial function and structure.


Clinical Science | 2012

Impact of exercise training on arterial wall thickness in humans

Dick H. J. Thijssen; N.T. Cable; Daniel J. Green

Thickening of the carotid artery wall has been adopted as a surrogate marker of pre-clinical atherosclerosis, which is strongly related to increased cardiovascular risk. The cardioprotective effects of exercise training, including direct effects on vascular function and lumen dimension, have been consistently reported in asymptomatic subjects and those with cardiovascular risk factors and diseases. In the present review, we summarize evidence pertaining to the impact of exercise and physical activity on arterial wall remodelling of the carotid artery and peripheral arteries in the upper and lower limbs. We consider the potential role of exercise intensity, duration and modality in the context of putative mechanisms involved in wall remodelling, including haemodynamic forces. Finally, we discuss the impact of exercise training in terms of primary prevention of wall thickening in healthy subjects and remodelling of arteries in subjects with existing cardiovascular disease and risk factors.


Journal of Applied Physiology | 2009

Is the ratio of flow-mediated dilation and shear rate a statistically sound approach to normalization in cross-sectional studies on endothelial function?

Greg Atkinson; Alan M. Batterham; Mark A. Black; N.T. Cable; Nicola D. Hopkins; Ellen A. Dawson; Dick H. J. Thijssen; Helen Jones; Toni M. Tinken; Daniel J. Green

It has been deemed important to normalize flow-mediated dilation (FMD), a marker of endothelial function, for between-subject differences in the eliciting shear rate (SR) stimulus. Conventionally, FMD is divided by the area under the curve of the SR stimulus. In the context of a cross-sectional comparison across different age cohorts, we examined whether this ratio approach adhered to established statistical assumptions necessary for reliable normalization. To quantify brachial artery FMD and area under the curve of SR, forearm cuff inflation to suprasystolic pressure was administered for 5 min to 16 boys aged 10.9 yr (SD 0.3), 48 young men aged 25.3 yr (SD 4.2), and 15 older men aged 57.5 yr (SD 4.3). Mean differences between age groups were statistically significant (P < 0.001) for nonnormalized FMD [children: 10.4% (SD 5.4), young adults: 7.5% (SD 2.9), older adults: 5.6% (SD 2.0)] but not for ratio-normalized FMD (P = 0.10). Moreover, all assumptions necessary for reliable use of ratio-normalization were violated, including regression slopes between SR and FMD that had y-intercepts greater than zero (P < 0.05), nonlinear and unstable relations between the normalized ratios and SR, skewed data distributions, and heteroscedastic variance. Logarithmic transformation of SR and FMD before ratio calculation improved adherence to these assumptions and resulted in age differences similar to the nonnormalized data (P = 0.03). In conclusion, although ratio normalization of FMD altered findings about age differences in endothelial function, this could be explained by violation of statistical assumptions. We recommend that exploration of these assumptions should be routine in future research. If the relationship between SR and FMD is generally found to be weak or nonlinear or variable between samples, then ratio normalization should not be applied.


Journal of Applied Physiology | 2012

Brachial artery adaptation to lower limb exercise training: Role of shear stress

Gurpreet K. Birk; Ellen A. Dawson; Ceri L. Atkinson; Andrew Haynes; N.T. Cable; Dick H. J. Thijssen; Daniel J. Green

Lower limb exercise increases upper limb conduit artery blood flow and shear stress, and leg exercise training can enhance upper limb vascular function. We therefore examined the contribution of shear stress to changes in vascular function in the nonexercising upper limbs in response to lower limb cycling exercise training. Initially, five male subjects underwent bilateral brachial artery duplex ultrasound to measure blood flow and shear responses to 30-min cycling exercise at 80% of maximal heart rate. Responses in one forearm were significantly (P < 0.05) attenuated via cuff inflation throughout the exercise bout. An additional 11 subjects participated in an 8-wk cycle training study undertaken at a similar intensity, with unilateral cuff inflation around the forearm during each exercise bout. Bilateral brachial artery flow-mediated dilation responses to a 5-min ischemic stimulus (FMD%), an ischemic handgrip exercise stimulus (iEX), and endothelium-independent NO donor administration [glyceryl trinitrate (GTN)] were measured at 2, 4, and 8 wk. Cycle training increased FMD% in the noncuffed limb at week 2, after which time responses returned toward baseline levels (5.8 ± 4.1, 8.6 ± 3.8, 7.4 ± 3.5, 6.0 ± 2.3 at 0, 2, 4 and 8 wk, respectively; ANOVA: P = 0.04). No changes in FMD% were observed in the cuffed arm. No changes were evident in response to iEX or GTN in either the cuffed or noncuffed arms (P > 0.05) across the 8-wk intervention period. Our data suggest that lower limb cycle training induces a transient increase in upper limb vascular function in healthy young humans, which is, at least partly, mediated via shear stress.

Collaboration


Dive into the N.T. Cable's collaboration.

Top Co-Authors

Avatar

Daniel J. Green

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Dick H. J. Thijssen

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar

Helen Jones

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar

Nicola D. Hopkins

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar

Ellen A. Dawson

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Reilly

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar

Keith George

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victoria S. Sprung

Liverpool John Moores University

View shared research outputs
Researchain Logo
Decentralizing Knowledge