N. V. Volodko
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N. V. Volodko.
Annals of Human Genetics | 2005
E. B. Starikovskaya; Rem I. Sukernik; Olga Derbeneva; N. V. Volodko; Eduardo Ruiz-Pesini; Antonio Torroni; Michael D. Brown; Marie T. Lott; Seyed H. Hosseini; Kirsi Huoponen; Douglas C. Wallace
In search of the ancestors of Native American mitochondrial DNA (mtDNA) haplogroups, we analyzed the mtDNA of 531 individuals from nine indigenous populations in Siberia. All mtDNAs were subjected to high‐resolution RFLP analysis, sequencing of the control‐region hypervariable segment I (HVS‐I), and surveyed for additional polymorphic markers in the coding region. Furthermore, the mtDNAs selected according to haplogroup/subhaplogroup status were completely sequenced. Phylogenetic analyses of the resulting data, combined with those from previously published Siberian arctic and sub‐arctic populations, revealed that remnants of the ancient Siberian gene pool are still evident in Siberian populations, suggesting that the founding haplotypes of the Native American A‐D branches originated in different parts of Siberia. Thus, lineage A complete sequences revealed in the Mansi of the Lower Ob and the Ket of the Lower Yenisei belong to A1, suggesting that A1 mtDNAs occasionally found in the remnants of hunting‐gathering populations of northwestern and northern Siberia belonged to a common gene pool of the Siberian progenitors of Paleoindians. Moreover, lineage B1, which is the most closely related to the American B2, occurred in the Tubalar and Tuvan inhabiting the territory between the upper reaches of the Ob River in the west, to the Upper Yenisei region in the east. Finally, the sequence variants of haplogroups C and D, which are most similar to Native American C1 and D1, were detected in the Ulchi of the Lower Amur. Overall, our data suggest that the immediate ancestors of the Siberian/Beringian migrants who gave rise to ancient (pre‐Clovis) Paleoindians have a common origin with aboriginal people of the area now designated the Altai‐Sayan Upland, as well as the Lower Amur/Sea of Okhotsk region.
American Journal of Human Genetics | 2008
N. V. Volodko; E. B. Starikovskaya; I. O. Mazunin; N. P. Eltsov; Polina V. Naidenko; Douglas C. Wallace; Rem I. Sukernik
Through extended survey of mitochondrial DNA (mtDNA) diversity in the Nganasan, Yukaghir, Chuvantsi, Chukchi, Siberian Eskimos, and Commander Aleuts, we filled important gaps in previously unidentified internal sequence variation within haplogroups A, C, and D, three of five (A-D and X) canonical mtDNA lineages that defined Pleistocenic extension from the Old to the New World. Overall, 515 mtDNA samples were analyzed via high-resolution SNP analysis and then complete sequencing of the 84 mtDNAs. A comparison of the data thus obtained with published complete sequences has resulted in the most parsimonious phylogenetic structure of mtDNA evolution in Siberia-Beringia. Our data suggest that although the latest inhabitants of Beringia are well genetically reflected in the Chukchi-, Eskimo-Aleut-, and Na-Dene-speaking Indians, the direct ancestors of the Paleosiberian-speaking Yukaghir are primarily drawn from the southern belt of Siberia when environmental conditions changed, permitting recolonization the high arctic since early Postglacial. This study further confirms that (1) Alaska seems to be the ancestral homeland of haplogroup A2 originating in situ approximately 16.0 thousand years ago (kya), (2) an additional founding lineage for Native American D, termed here D10, arose approximately 17.0 kya in what is now the Russian Far East and eventually spread northward along the North Pacific Rim. The maintenance of two refugial sources, in the Altai-Sayan and mid-lower Amur, during the last glacial maximum appears to be at odds with the interpretation of limited founding mtDNA lineages populating the Americas as a single migration.
American Journal of Human Genetics | 2002
Olga Derbeneva; Rem I. Sukernik; N. V. Volodko; Seyed H. Hosseini; Marie T. Lott; Douglas C. Wallace
The Aleuts are aboriginal inhabitants of the Aleutian archipelago, including Bering and Copper (Medny) Islands of the Commanders, and seem to be the survivors of the inhabitants of the southern belt of the Bering Land Bridge that connected Chukotka/Kamchatka and Alaska during the end of the Ice Age. Thirty mtDNA samples collected in the Commanders, as well as seven mtDNA samples from Sireniki Eskimos in Chukotka who belong to the Beringian-specific subhaplogroup D2, were studied through complete sequencing. This analysis has provided evidence that all 37 of these mtDNAs are closely related, since they share the founding haplotype for subhaplogroup D2. We also demonstrated that, unlike the Eskimos and Na-Dene, the Aleuts of the Commanders were founded by a single lineage of haplogroup D2, which had acquired the novel transversion mutation 8910A. The phylogeny of haplogroup D complete sequences showed that (1) the D2 root sequence type originated among the latest inhabitants of Beringia and (2) the Aleut 8910A sublineage of D2 is a part of larger radiation of rooted D2, which gave rise to D2a (Na-Dene), D2b (Aleut), and D2c (Eskimo) sublineages. The geographic specificity and remarkable intrinsic diversity of D2 lineages support the refugial hypothesis, which assumes that the founding population of Eskimo-Aleut originated in Beringan/southwestern Alaskan refugia during the early postglacial period, rather than having reached the shores of Alaska as the result of recent wave of migration from interior Siberia.
Molecular Biology | 2010
I. O. Mazunin; N. V. Volodko; E. B. Starikovskaya; Rem I. Sukernik
Today there are described more than 400 point mutations and more than hundred of structural rearrangements of mitochondrial DNA associated with characteristic neuromuscular and other mitochondrial syndromes, from lethal in the neonatal period of life to the disease with late onset. The defects of oxidative phosphorylation are the main reasons of mitochondrial disease development. Phenotypic diversity and phenomenon of heteroplasmy are the hallmark of mitochondrial human diseases. It is necessary to assess the amount of mutant mtDNA accurately, since the level of heteroplasmy largely determines the phenotypic manifestation. In spite of tremendous progress in mitochondrial biology since the cause-and-effect relations between mtDNA mutation and the human diseases was established over 20 years ago, there is still no cure for mitochondrial diseases.
Russian Journal of Genetics | 2006
N. V. Volodko; M. A. L’vova; E. B. Starikovskaya; Olga Derbeneva; I. Yu. Bychkov; I. E. Mikhailovskaya; I. V. Pogozheva; F. F. Fedotov; G. V. Soyan; V. Procaccio; Douglas C. Wallace; Rem I. Sukernik
The results of clinical, genealogical and molecular investigation of eighteen families with Leber’s hereditary optic neuropathy (LHON), identified on the territory of Siberia during the period from 1997 to 2005, are presented. Comprehensive analysis of mitochondrial genome variations in probands and their matrilineal relatives revealed the presence of relatively frequent (G11778A, G3460A, and T14484C), as well as rare and new mutations with the established or presumptive pathological effect (T10663C, G3535A, C4640A, and A14619G). The G11778A mutation was detected in nine pedigrees (50%), mostly in the families of ethnic Russians. In eight of these families G11778A was found in preferred association with the coding-region substitutions, typical of western Eurasian mtDNA lineage (haplogroup) TJ. On the contrary, the G3460A mutation was detected in the three families belonging to the indigenous Siberian populations (Tuvinians, Altaians, and Buryats). It was associated with clearly different haplotypes of eastern Eurasian haplogroups, C3, D5, and D8. Unexpectedly, the G3460A de novo mutation was found in a large Tuvinian pedigree. At the same time, in eleven out of fourteen families of Caucasoid origin pathogenic mutations in the ND genes were associated with the T4216C and C15445A coding-region mutations, marking the root motif of haplogoup TJ. It is suggested that phylogenetically ancient mutations could have provided their carriers with the adaptive advantages upon the development of Central and Northern Europe at the end of the last glaciation (10 000 to 9000 years ago), thereby, contributing to the preservation of weekly pathogenic LHON mutations, appearing at specific genetic background.
Russian Journal of Genetics | 2010
Rem I. Sukernik; N. V. Volodko; I. O. Mazunin; N. P. Eltsov; E. B. Starikovskaya
The mtDNA variation has been studied in representatives of the Russkoe Ust’e (n = 30), Kolyma (n = 31), and Markovo (n = 26) ethnic subgroups originating from Russian military men, hunters, and fishers who married local Yukaghir women and settled at the Arctic Ocean coast and on the Anadyr’ River more than 350 years ago. The mtDNA haplotypes characteristic of indigenous Siberian peoples have been demonstrated to form the basis of the mitochondrial gene pool of Russian old settlers of the region. Only one of 30 identified haplotypes belonging to 11 haplogroups (H2a) is characteristic of European populations. The C and D haplogroups are the most diverse. The analysis has revealed the characteristics of the population structure of the Russian old settlers and allowed them to be interpreted in terms of recent historical and environmental processes.
Russian Journal of Genetics | 2003
N. V. Volodko; Olga Derbeneva; T. S. Uinuk-ool; Rem I. Sukernik
Variability of the HLA class II genes (alleles of the DRB1, DQA1, and DQB1 loci) was investigated in a sample of Aleuts of the Commanders (n = 31), whose ancestors inhabited the Commander Islands for many thousand years. Among 19 haplotypes revealed in the Aleuts of the Commanders, at most eight were inherited from the native inhabitants of the Commander Islands. Five of these haplotypes (DRB1*0401-DQA1*0301-DQB1*0301, DRB1*1401-DQA1*0101-DQB1*0503, DRB1*0802-DQA1*0401-DQB1*0402, DRB1*1101-DQA1*0501-DQB1*0301, and DRB1*1201-DQA1*0501-DQB1*0301) were typical of Beringian Mongoloids, i.e., Coastal Chukchi and Koryaks, as well as Siberian and Alaskan Eskimos. Genetic contribution of the immigrants to the genetic pool of the proper Aleuts constituted about 52%. Phylogenetic analysis based on Transberingian distribution of the DRB1 allele frequencies favored the hypothesis on the common origin of the Paleo-Aleuts, Paleo-Eskimos, and the Indians from the northwestern North America, whose direct ancestors survived in Beringian/southwestern Alaskan coastal refugia during the late Ice Age.
Russian Journal of Genetics | 2010
N. P. Eltsov; N. V. Volodko; E. B. Starikovskaya; I. O. Mazunin; Rem I. Sukernik
The role of natural selection in the evolution of the mitochondrial genome in human populations from Northeastern Eurasia was studied. Selection for the regions-specific haplogroup C was demonstrated.
Russian Journal of Genetics | 2009
N. V. Volodko; N. P. Eltsov; E. B. Starikovskaya; Rem I. Sukernik
Based on the mtDNA first hypervariable segment sequence variation data, statistical analysis of the diversity in Yukaghirs in comparison with the other indigenous populations of Siberia, was carried out. The level of the Yukaghir mtDNA gene diversity (GD) constituted 0.920, which was only slightly different from the corresponding estimate for the other Siberian populations. Integral estimates of the genetic structure of Siberian populations (k, S, θS, and π) are presented. Phylogenetic analysis, performed using the neighbor-joining method, showed that the Siberian populations clustered irrespectively to their language affiliation. Negative Fs values found in Yukaghirs pointed to the possible influence of adaptive selection.
Genetika | 2002
Olga Derbeneva; Starikovskaia Eb; N. V. Volodko; Douglas C. Wallace; Rem I. Sukernik