N. Vidal
Bellvitge University Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N. Vidal.
Neurochemistry International | 2005
Marta Barrachina; Esther Dalfó; B. Puig; N. Vidal; Meritxell Freixes; Esther Castaño; Isidro Ferrer
Deposition of amyloid-beta, the fibrillogenic product of the cell surface protein AbetaPP (amyloid-beta protein precursor), occurs in the cerebral cortex of patients with Dementia with Lewy bodies (DLB). Amyloid deposition, basically in the form of senile plaques, occurs not only in the common form (DLBc), which is defined by changes consistent with diffuse Lewy body disease accompanied by Alzheimers disease (AD), but also in the pure form (DLBp), in which neurofibrillary tangles are absent. The present study analyses the expression of AbetaPP mRNA isoforms with (AbetaPP751 and AbetaPP770) and without (AbetaPP695) the Kunitz-type serine protease inhibitor (KPI) domain, in the cerebral cortex in DLBc (n=4), DLBp (n=4), Parkinsons disease (PD, n=5), AD (n=3 stages I-IIA, and n=4 stage VC of Braak and Braak), amyloid angiopathy (AA, n=2) and progressive supranuclear palsy (PSP, n=4) compared with age-matched controls (n=6). For this purpose, TaqMan RT-PCR assay was used on frozen post-mortem samples of the frontal cortex (area 8) obtained with short post-mortem delays (8.29+/-4.57 h) and strict RNA preservation (A260/280 of 1.78+/-0.15). A 3.66-fold, 6.67-fold, 4.28-fold and 5.24-fold increases, in the (AbetaPP751+AbetaPP770)/AbetaPP695 mRNA ratio were found in DLBc, DLBp, AD stage VC and AA, respectively, when compared with controls. No modifications in the ratio were found in PD, AD stage I-IIA and PSP. These findings suggest that alternative splicing of the AbetaPP mRNA may play a role in betaA4 amyloidogenesis in DLBp, DLBc, AD stage VC and Amyloid angiopathy.
Oncotarget | 2015
Antonio Martínez-Aranda; Vanessa Hernández; Emre Guney; Laia Muixí; Ruben Foj; Núria Baixeras; Daniel Cuadras; Victor Moreno; Ander Urruticoechea; Miguel Gil; Baldo Oliva; Ferran Moreno; Eva González-Suárez; N. Vidal; Xavier Andreu; Miquel A. Seguí; Rosa Ballester; Eva Castella; Angels Sierra
Brain metastasis is a devastating problem in patients with breast, lung and melanoma tumors. GRP94 and FN14 are predictive biomarkers over-expressed in primary breast carcinomas that metastasized in brain. To further validate these brain metastasis biomarkers, we performed a multicenter study including 318 patients with breast carcinomas. Among these patients, there were 138 patients with metastasis, of whom 84 had brain metastasis. The likelihood of developing brain metastasis increased by 5.24-fold (95%CI 2.83–9.71) and 2.55- (95%CI 1.52–4.3) in the presence of FN14 and GRP94, respectively. Moreover, FN14 was more sensitive than ErbB2 (38.27 vs. 24.68) with similar specificity (89.43 vs. 89.55) to predict brain metastasis and had identical prognostic value than triple negative patients (p < 0.0001). Furthermore, we used GRP94 and FN14 pathways and GUILD, a network-based disease-gene prioritization program, to pinpoint the genes likely to be therapeutic targets, which resulted in FN14 as the main modulator and thalidomide as the best scored drug. The treatment of mice with brain metastasis improves survival decreasing reactive astrocytes and angiogenesis, and down-regulate FN14 and its ligand TWEAK. In conclusion our results indicate that FN14 and GRP94 are prediction/prognosis markers which open up new possibilities for preventing/treating brain metastasis.
Oncotarget | 2016
Mònica Bosch-Morató; Cinta Iriondo; Biuse Guivernau; Victòria Valls-Comamala; N. Vidal; Montse Olivé; Henry Querfurth; Francisco Muñoz
GNE myopathy is an autosomal recessive muscular disorder of young adults characterized by progressive skeletal muscle weakness and wasting. It is caused by a mutation in the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene, which encodes a key enzyme in sialic acid biosynthesis. The mutated hypofunctional GNE is associated with intracellular accumulation of amyloid β-peptide (Aβ) in patient muscles through as yet unknown mechanisms. We found here for the first time that an experimental reduction in sialic acid favors Aβ1-42 endocytosis in C2C12 myotubes, which is dependent on clathrin and heparan sulfate proteoglycan. Accordingly, Aβ1-42 internalization in myoblasts from a GNE myopathy patient was enhanced. Next, we investigated signal changes triggered by Aβ1-42 that may underlie toxicity. We observed that p-Akt levels are reduced in step with an increase in apoptotic markers in GNE myopathy myoblasts compared to control myoblasts. The same results were experimentally obtained when Aβ1-42 was overexpressed in myotubes. Hence, we propose a novel disease mechanism whereby hyposialylation favors Aβ1-42 internalization and the subsequent apoptosis in myotubes and in skeletal muscle from GNE myopathy patients.
Oncotarget | 2017
Elisabetta Stanzani; Fina Martínez-Soler; Teresa Martín Mateos; N. Vidal; Alberto Villanueva; Miquel Àngel Pujana; Jordi Serra-Musach; Núria de la Iglesia; Pepita Giménez-Bonafé; Avelina Tortosa
Glioblastoma (GBM) still remains an incurable disease being radiotherapy (RT) the mainstay treatment. Glioblastoma intra-tumoral heterogeneity and Glioblastoma-Initiating Cells (GICs) challenge the design of effective therapies. We investigated GICs and non-GICs response to RT in a paired in-vitro model and addressed molecular programs activated in GICs after RT. Established GICs heterogeneously expressed several GICs markers and displayed a mesenchymal signature. Upon fractionated RT, GICs reported higher radioresistance compared to non-GICs and showed lower α- and β-values, according to the Linear Quadratic Model interpretation of the survival curves. Moreover, a significant correlation was observed between GICs radiosensitivity and patient disease-free survival. Transcriptome analysis of GICs after acquisition of a radioresistant phenotype reported significant activation of Proneural-to-Mesenchymal transition (PMT) and pro-inflammatory pathways, being STAT3 and IL6 the major players. Our findings support a leading role of mesenchymal GICs in defining patient response to RT and provide the grounds for targeted therapies based on the blockade of inflammatory pathways to overcome GBM radioresistance.Glioblastoma (GBM) still remains an incurable disease being radiotherapy (RT) the mainstay treatment. Glioblastoma intra-tumoral heterogeneity and Glioblastoma-Initiating Cells (GICs) challenge the design of effective therapies. We investigated GICs and non-GICs response to RT in a paired in-vitro model and addressed molecular programs activated in GICs after RT. Established GICs heterogeneously expressed several GICs markers and displayed a mesenchymal signature. Upon fractionated RT, GICs reported higher radioresistance compared to non-GICs and showed lower α- and β-values, according to the Linear Quadratic Model interpretation of the survival curves. Moreover, a significant correlation was observed between GICs radiosensitivity and patient disease-free survival. Transcriptome analysis of GICs after acquisition of a radioresistant phenotype reported significant activation of Proneural-to-Mesenchymal transition (PMT) and pro-inflammatory pathways, being STAT3 and IL6 the major players. Our findings support a leading role of mesenchymal GICs in defining patient response to RT and provide the grounds for targeted therapies based on the blockade of inflammatory pathways to overcome GBM radioresistance.
Neuro-oncology | 2016
Cristina Izquierdo; Roser Velasco; N. Vidal; Juan José Sánchez; Andreas A. Argyriou; Sarah Besora; Francesc Graus; Jordi Bruna
BACKGROUND Primary central nervous system lymphomas may present as diffuse, nonenhancing infiltrative lesions. This rare variant is termed lymphomatosis cerebri (LC). We did a systematic review and analysis of the literature, adding our own cases, to better characterize LC in order to improve early diagnosis and treatment. METHODS PubMed, ISI Web of Knowledge, and hospital databases were reviewed. Information was extracted regarding demographic, clinical, histological, cerebrospinal fluid (CSF), neuroimaging, and treatment variables. The impact of single parameters on overall survival (OS) was determined by applying univariate and multivariate analyses. RESULTS Forty-two patients were included (median age: 58 y; range: 28-80 y). At consultation, 52% of patients had a poor KPS. The most common presenting symptom was cognitive decline (59.5%). Imaging studies showed supratentorial and infratentorial infiltration in 55% of patients and bilateral hemispheric involvement in 95%. CSF pleocytosis was present in 51.5% of the patients. Median time to diagnosis was 4.5 (range: 1-30) months, and the diagnosis was not established until autopsy for 33% of patients. The median OS was 2.95 (range: 0.33-56) months; however, those patients who received methotrexate had a median OS of 13.8 (range: 0.7-56) months. Analysis identified KPS ≥ 70 (HR: 0.32; 95% CI: 0.114-0.894; P = .03) and treatment with methotrexate (HR: 0.19; 95% CI: 0.041-0.886; P = .034) as independent favorable prognostic factors, whereas T-cell lymphoma was independently related with a worse outcome (HR: 6.62; 95% CI: 1.317-33.316; P = .022). CONCLUSIONS LC is a misdiagnosed entity associated with considerable diagnostic delay. MRI evidence of bilateral hemispheric involvement and CSF pleocytosis should be alerts for this diagnosis. Treatment with methotrexate-based chemotherapy must be considered, especially for patients with good KPS.
Archive | 2017
Isidro Ferrer; N. Vidal
The chapter describes the epidemiology of cerebrovascular diseases, anatomy of the cerebral blood vessels, pathophysiology of ischemia, hypoxia, hypoxemia, anemic hypoxia, histotoxic hypoxia, carbon monoxide damage, hyperoxid brain damage and decompression sickness, and selective cell and regional vulnerability; diseases of the blood vessels including atherosclerosis, hypertensive angiopathy, small vessel disease, inflammatory vascular diseases, cerebral amyloid angiopathies, CADASIL, CARASIL and other diseases that can lead to cerebrovascular occlusion; intracranial and intraspinal aneurysms and vascular malformations; hematologic disorders that can cause cerebral infarct or hemorrhage; brain ischemic damage; and spontaneous intracranial bleeding. Within ischemic brain damage, focal cerebral ischemia, hemorrhagic infarct, brain edema, penumbra, global cerebral ischemia, venous thrombosis, lacunas and lacunar state, status cribosus, granular atrophy of the cerebral cortex, hippocampal sclerosis, vascular leukoencephalopathy Binswanger type and multi-infarct encephalopathy are discussed in detail. Cognitive impairment of vascular origin deserves an individual section.
Neuro-oncology | 2016
María Sánchez-Osuna; Laura Martínez-Escardó; Carla Granados-Colomina; Fina Martínez-Soler; Sònia Pascual-Guiral; Victoria Iglesias-Guimarais; Roser Velasco; Gerard Plans; N. Vidal; Avelina Tortosa; Carlos Barcia; Jordi Bruna; Victor J. Yuste
BACKGROUND Glioblastoma (GBM) or grade IV astrocytoma is one of the most devastating human cancers. The loss of DFF40/CAD, the key endonuclease that triggers oligonucleosomal DNA fragmentation during apoptosis, has been linked to genomic instability and cell survival after radiation. Despite the near inevitability of GBM tumor recurrence after treatment, the relationship between DFF40/CAD and GBM remains unexplored. METHODS We studied the apoptotic behavior of human GBM-derived cells after apoptotic insult. We analyzed caspase activation and the protein levels and subcellular localization of DFF40/CAD apoptotic endonuclease. DFF40/CAD was also evaluated in histological sections from astrocytic tumors and nontumoral human brain. RESULTS We showed that GBM cells undergo incomplete apoptosis without generating oligonucleosomal DNA degradation despite the correct activation of executioner caspases. The major defect of GBM cells relied on the improper accumulation of DFF40/CAD at the nucleoplasmic subcellular compartment. Supporting this finding, DFF40/CAD overexpression allowed GBM cells to display oligonucleosomal DNA degradation after apoptotic challenge. Moreover, the analysis of histological slices from astrocytic tumors showed that DFF40/CAD immunoreactivity in tumoral GFAP-positive cells was markedly reduced when compared with nontumoral samples. CONCLUSIONS Our data highlight the low expression levels of DFF40/CAD and the absence of DNA laddering as common molecular traits in GBM. These findings could be of major importance for understanding the malignant behavior of remaining tumor cells after radiochemotherapy.
British Journal of Neurosurgery | 2014
Jose Luis Sanmillán; Gerard Plans; N. Vidal; Juan José Acebes
Abstract Introduction. Intracranial schwannomas not related to cranial nerves are uncommon brain tumours. Such tumours account for less than 1% of all surgically treated schwannomas. Only 79 cases have been reported in the literature. Methods. We describe two cases treated in our centre. The patients are young women with seizures as a presenting symptom. Both underwent surgery with the presumptive diagnosis of benign brain tumour. Histopathological examination revealed the certain diagnosis of Schwannoma. Results. Good outcome was achieved with total excision of the tumour. Based on the literature, demographic data, clinical aspects, imaging features and theories on the possible origin of this rare tumour are discussed. Conclusions. These tumours should be included in the differential diagnosis of supratentorial benign tumours in young adults. Total excision, whenever possible, is the treatment of choice.
Frontiers in Oncology | 2017
Antonio Martínez-Aranda; Vanessa Hernández; Ferran Moreno; Núria Baixeras; Daniel Cuadras; Ander Urruticoechea; Miguel Gil-Gil; N. Vidal; Xavier Andreu; Miquel A. Seguí; Rosa Ballester; Eva Castellà; Angels Sierra
FN14 has been implicated in many intracellular signaling pathways, and GRP94 is a well-known endoplasmic reticulum protein regulated by glucose. Recently, both have been associated with metastasis progression in breast cancer patients. We studied the usefulness of FN14 and GRP94 expression to stratify breast cancer patients according their risk of brain metastasis (BrM) progression. We analyzed FN14 and GRP94 by immunohistochemistry in a retrospective multicenter study using tissue microarrays from 208 patients with breast carcinomas, of whom 52 had developed BrM. Clinical and pathological characteristics and biomarkers expression in Luminal and non-Luminal patients were analyzed using a multivariate logistic regression model adjusted for covariates, and brain metastasis-free survival (BrMFS) was estimated using the Kaplan–Meier method and the Cox proportional hazards model. FN14 expression was associated with BrM progression mainly in Luminal breast cancer patients with a sensitivity (53.85%) and specificity (89.60%) similar to Her2 expression (46.15 and 89.84%, respectively). Moreover, the likelihood to develop BrM in FN14-positive Luminal carcinomas increased 36.70-fold (3.65–368.25, p = 0.002). Furthermore, the worst prognostic factor for BrMFS in patients with Luminal carcinomas was FN14 overexpression (HR = 8.25; 95% CI: 2.77–24.61; p = 0.00015). In these patients, GRP94 overexpression also increased the risk of BrM (HR = 3.58; 95% CI: 0.98–13.11; p = 0.054—Wald test). Therefore, FN14 expression in Luminal breast carcinomas is a predictive/prognostic biomarker of BrM, which combined with GRP94 predicts BrM progression in non-Luminal tumors 4.04-fold (1.19–8.22, p = 0.025), suggesting that both biomarkers are useful to stratify BrM risk at early diagnosis. We propose a new follow-up protocol for the early prevention of clinical BrM of breast cancer patients with BrM risk.
Brain Pathology | 2016
Isidro Ferrer; Fina Climent; N. Vidal; Luis Alberto Escobar; Juan José Sánchez; Alejandro Fernandez-Coello
A 74-year-old woman suffered from progressive weakness, paresis of the right hemisphere and occasional headache during the last three months. The patient denied having had nausea, vomiting, fever or weight loss. Nuclear magnetic resonance showed round lobular lesions involving the frontal lobe and corpus callosum, protruding into the lateral ventricle. Lesions were enhanced with the contrast medium exhibiting a ring-like appearance (Fig. 1a, 1b, 1c). A stereotactic brain biopsy was performed using VarioGuide system. MICROSCOPIC PATHOLOGY