Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where N. W. Boggess is active.

Publication


Featured researches published by N. W. Boggess.


The Astrophysical Journal | 1994

MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND SPECTRUM BY THE COBE FIRAS INSTRUMENT

John C. Mather; Edward S. Cheng; David A. Cottingham; Robert Eugene Eplee; Dale J. Fixsen; Tilak Hewagama; Richard Bruce Isaacman; Kathleen Jensen; S. S. Meyer; Peter D. Noerdlinger; S. M. Read; L. P. Rosen; Richard A. Shafer; Edward L. Wright; C. L. Bennett; N. W. Boggess; Michael G. Hauser; T. Kelsall; S. H. Moseley; R. F. Silverberg; George F. Smoot; Rainer Weiss; D. T. Wilkinson

The cosmic microwave background radiation (CMBR) has a blackbody spectrum within 3.4 x 10(exp -8) ergs/sq cm/s/sr cm over the frequency range from 2 to 20/cm (5-0.5 mm). These measurements, derived from the Far-Infrared Absolute Spectrophotomer (FIRAS) instrument on the Cosmic Background Explorer (COBE) satellite, imply stringent limits on energy release in the early universe after t approximately 1 year and redshift z approximately 3 x 10(exp 6). The deviations are less than 0.30% of the peak brightness, with an rms value of 0.01%, and the dimensionless cosmological distortion parameters are limited to the absolute value of y is less than 2.5 x 10(exp -5) and the absolute value of mu is less than 3.3 x 10(exp -4) (95% confidence level). The temperature of the CMBR is 2.726 +/- 0.010 K (95% confidence level systematic).


The Astrophysical Journal | 1990

A Preliminary Measurement of the Cosmic Microwave Background Spectrum by the Cosmic Background Explorer(COBE)Satellite

John C. Mather; E. S. Cheng; Richard A. Shafer; C. L. Bennett; N. W. Boggess; E. Dwek; Michael G. Hauser; T. Kelsall; S. H. Moseley; R. F. Silverberg

A preliminary spectrum is presented of the background radiation between 1 and 20/cm from regions near the north Galactic pole, as observed by the FIRAS instrument on the COBE satellite. The spectral resolution is 1/cm. The spectrum is well fitted by a blackbody with a temperature of 2.735 + or - 0.06 K, and the deviation from a blackbody is less than 1 percent of the peak intensity over the range 1-20/cm. These new data show no evidence for the submillimeter excess previously reported by Matsumoto et al. (1988) in the cosmic microwave background. Further analysis and additional data are expected to improve the sensitivity to deviations from a blackbody spectrum by an order of magnitude. 31 refs.


The Astrophysical Journal | 1991

Preliminary spectral observations of the Galaxy with a 7 deg beam by the Cosmic Background Explorer (COBE)

E. L. Wright; John C. Mather; C. L. Bennett; E. S. Cheng; Richard A. Shafer; N. W. Boggess; Michael G. Hauser; T. Kelsall; S. H. Moseley; R. F. Silverberg

The FIR absolute spectrophotometer (FIRAS) on the Cosmic Background Explorer (COBE) has carried out the first all-sky spectral line survey in the FIR region, as well as mapping spectra of the Galactic dust distribution at below 100 microns. Lines of forbidden C I, C II, and N II, as well as of CO are all clearly detected. The mean line intensities are interpreted in terms of the heating and cooling of the multiple phases of the interstellar gas. In addition, an average spectrum of the galaxy is constructed and searched for weak lines. The spectrum of the galaxy observed by FIRAS has two major components: a continuous spectrum due to interstellar dust heated by starlight, and a line spectrum dominated by the strong 158-micron line from singly ionized carbon, with a spatial distribution similar to the dust distribution, and a luminosity of 0.3 percent of the dust luminosity. There are in addition moderately strong 122- and 205.3-micron lines, identified as coming from singly-ionized nitrogen. Maps of the emission by dust and forbidden C II and N II are presented.


The Astrophysical Journal | 1993

Dipole anisotropy in the COBE DMR first year sky maps

A. Kogut; C. Lineweaver; George F. Smoot; C. L. Bennett; A. J. Banday; N. W. Boggess; Edward S. Cheng; G. De Amici; Dale J. Fixsen; G. Hinshaw; P. D. Jackson; Michael A. Janssen; P. Keegstra; K. Loewenstein; P. M. Lubin; John C. Mather; L. Tenorio; Ron Weiss; D. T. Wilkinson; E. L. Wright

We present a determination of the cosmic microwave background dipole amplitude and direction from the COBE Differential Microwave Radiometers (DMR) first year of data. Data from the six DMR channels are consistent with a Doppler-shifted Planck function of dipole amplitude ΔT=3.365±0.027 mK toward direction (l II , b II )=(264°.4±0°.3, 48°.4±0°.5). The implied velocity of the Local Group with respect to the CMB rest frame is v LG =627±22 km s −1 toward (l II , b II )=(276°±3°, 30°±3°). DMR has also mapped the dipole anisotropy resulting from the Earths orbital motion about the Solar system barycenter, yielding a measurement of the monopole CMB temperature T 0 at 31.5, 53, and 90 GHz, T 0 =2.75±0.05 KWe present a determination of the cosmic microwave background dipole amplitude and direction from the COBE Differential Microwave Radiometers (DMR) first year of data. Data from the six DMR channels are consistent with a Doppler-shifted Planck function of dipole amplitude Delta T = 3.365 +/-0.027 mK toward direction (l,b) = (264.4 +/- 0.3 deg, 48.4 +/- 0.5 deg). The implied velocity of the Local Group with respect to the CMB rest frame is 627 +/- 22 km/s toward (l,b) = (276 +/- 3 deg, 30 +/- 3 deg). DMR has also mapped the dipole anisotropy resulting from the Earths orbital motion about the Solar system barycenter, yielding a measurement of the monopole CMB temperature at 31.5, 53, and 90 GHz, to be 2.75 +/- 0.05 K.


The Astrophysical Journal | 1992

The COBE mission - its design and performance two years after launch

N. W. Boggess; John C. Mather; Ron Weiss; C. L. Bennett; Edward S. Cheng; E. Dwek; Samuel Gulkis; Michael G. Hauser; Michael A. Janssen; T. Kelsall; S. S. Meyer; S. H. Moseley; Thomas L. Murdock; Richard A. Shafer; R. F. Silverberg; George F. Smoot; D. T. Wilkinson; E. L. Wright

COBE, NASAs first space mission devoted primarily to cosmology, carries three scientific instruments to make precise measurements of the spectrum and anisotropy of the cosmic microwave background radiation on angular scales greater than 7° and to conduct a search for a diffuse cosmic infrared background radiation with 0°.7 angular resolution. The mission goal is to make these measurements to the limit imposed by the local astrophysical foregrounds. The COBE instruments cover the wavelength range from 1.2 μm to 1 cm. The instruments are calibrated periodically in orbit using internal calibrators and celestial standards


The Astrophysical Journal | 1992

Interpretation of the cosmic microwave background radiation anisotropy detected by the COBE Differential Microwave Radiometer

E. L. Wright; S. S. Meyer; C. L. Bennett; N. W. Boggess; Edward S. Cheng; Michael G. Hauser; A. Kogut; C. Lineweaver; John C. Mather; George F. Smoot

The large-scale cosmic background anisotropy detected by the COBE Differential Microwave Radiometer (DMR) instrument is compared to the sensitive previous measurements on various angular scales, and to the predictions of a wide variety of models of structure formation driven by gravitational instability. The observed anisotropy is consistent with all previously measured upper limits and with a number of dynamical models of structure formation. For example, the data agree with an unbiased cold dark matter (CDM) model with H0 = 50 km/s Mpc and Delta-M/M = 1 in a 16 Mpc radius sphere. Other models, such as CDM plus massive neutrinos (hot dark matter (HDM)), or CDM with a nonzero cosmological constant are also consistent with the COBE detection and can provide the extra power seen on 5-10,000 km/s scales. 39 refs.


The Astrophysical Journal | 1994

Large-scale characteristics of interstellar dust from COBE DIRBE observations

T. J. Sodroski; C. L. Bennett; N. W. Boggess; E. Dwek; Bryan A. Franz; Michael G. Hauser; T. Kelsall; S. H. Moseley; N. Odegard; R. F. Silverberg; J. L. Weiland

Observations from the COBE Diffuse Infrared Background Experiment of the 140 and 240 micrometer emissions from the Galatic plane region (absolute value of b less than 10 deg) are combined with radio surveys that trace the molecular (H2), neutral atomic (H I), and extended low-density (n(sub e) approximately 10 to 100/cm(exp 3)) ionized (H II) gas phases of the interstellar medium to derive physical conditions such as the dust temperature, dust-to-gas mass ratio, and far-infrared emissivity (1) averaged over these gas phases along each line of sight and (2) within each of these three gas phases. This analysis shows large-scale longitudinal and latitudinal gradients in the dust temperature and a decrease in dust temperature with increasing Galactocentric distance. The derived dust temperatures are significantly different from those derived in similar analyses using the Infrared Astronomical Satellite (IRAS) 60 and 100 micrometer data, suggesting that small (5 A approximately less than radius approximately less than 200 A) transiently heated dust particles contribute significantly o the Galactic 60 micrometer emission. It is found that 60% to 75% of the far-infrared luminosity arises from cold (approximately 17 to 22 K) dust associated with diffuse H I clouds, 15% to 30% from cold (approximately 19 K) dust associated with molecular gas, and less than 10% from warm (approximately 29 K) dust in extended low-density H II regions, consistent with the results of the IRAS analyses of the Galactic 60 and 100 micrometer emission. Within 2 deg of longitude of the Galactic center, the derived gas-to-dust mass ratio along the line of sight, G(sub d), reverses its general trend of decreasing G(sub d) toward the inner Galaxy and increases by a factor of approximately 2 to 3 toward the Galactic center. One possible explanation for this result is that the ratio of H2 column density to (12)CO intensity is lower in the Galactic center region than in the Galactic disk.


The Astrophysical Journal | 1994

Interpretation of the COBE FIRAS CMBR spectrum

E. L. Wright; John C. Mather; Dale J. Fixsen; A. Kogut; Richard A. Shafer; C. L. Bennett; N. W. Boggess; E. S. Cheng; R. F. Silverberg; George F. Smoot; Ron Weiss

The cosmic microwave background radiation (CMBR) spectrum measured by the Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on NASAs Cosmic Background Explorer (COBE) is indistinguishable from a blackbody, implying stringent limits on energy release in the early universe later than the time t = 1 yr after the big bang. We compare the FIRAS data to previous precise measurements of the cosmic microwave background spectrum and find a reasonable agreement. We discuss the implications of the absolute value of y is less than 2.5 x 10(exp -5) and the absolute value of mu is less than 3.3 x 10(exp -4) 95% confidence limits found by Mather et al. (1994) on many processes occurring after t = 1 yr, such as explosive structure formation, reionization, and dissipation of small-scale density perturbations. We place limits on models with dust plus Population III stars, or evolving populations of IR galaxies, by directly comparing the Mather et al. spectrum to the model predictions.


The Astrophysical Journal | 1994

Cosmic Microwave Background Dipole Spectrum Measured by the COBE FIRAS Instrument

Dale J. Fixsen; Richard A. Shafer; C. L. Bennett; Robert Eugene Eplee; E. S. Cheng; E. L. Wright; John C. Mather; T. Kelsall; George F. Smoot; Peter D. Noerdlinger; Richard Bruce Isaacman; Ron Weiss; N. W. Boggess; D. T. Wilkinson; S. S. Meyer; S. H. Moseley; David A. Cottingham; R. F. Silverberg

The Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) has determined the dipole spectrum of the cosmic microwave background radiation (CMBR) from 2 to 20/cm. For each frequency the signal is decomposed by fitting to a monopole, a dipole, and a Galactic template for approximately 60% of the sky. The overall dipole spectrum fits the derivative of a Planck function with an amplitude of 3.343 +/- 0.016 mK (95% confidence level), a temperature of 2.714 +/- 0.022 K (95% confidence level), and an rms deviation of 6 x 10(exp -9) ergs/sq cm/s/sr cm limited by a detector and cosmic-ray noise. The monopole temperature is consistent with that determined by direct measurement in the accompanying article by Mather et al.


The Astrophysical Journal | 1992

COBE differential Microwave Radiometers : preliminary systematic error analysis

A. Kogut; George F. Smoot; C. L. Bennett; E. L. Wright; J. Aymon; G. De Amici; G. Hinshaw; P. D. Jackson; E. Kaita; P. Keegstra; C. Lineweaver; K. Loewenstein; L. Rokke; L. Tenorio; N. W. Boggess; Edward S. Cheng; Samuel Gulkis; Michael G. Hauser; Michael A. Janssen; T. Kelsall; John C. Mather; S. S. Meyer; S. H. Moseley; Thomas L. Murdock; Richard A. Shafer; R. F. Silverberg; Rainer Weiss; D. T. Wilkinson

The Differential Microwave Radiometers (DMR) instrument aboard the Cosmic Background Explorer (COBE) maps the full microwave sky in order to measure the large-angular-scale anisotropy of the cosmic microwave background radiation. Solar system foreground sources, instrumental effects, as well as data recovery and processing, can combine to create statistically significant artifacts in the analyzed data. We discuss the techniques available for the identification and subtraction of these effects from the DMR data and present preliminary limits on their magnitude in the DMR 1 yr maps (Smoot et al. 1992)

Collaboration


Dive into the N. W. Boggess's collaboration.

Top Co-Authors

Avatar

R. F. Silverberg

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

S. H. Moseley

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

T. Kelsall

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

C. L. Bennett

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Michael G. Hauser

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

E. L. Wright

University of California

View shared research outputs
Top Co-Authors

Avatar

John C. Mather

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Richard A. Shafer

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Edward S. Cheng

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge