N. Wiehl
University of Mainz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N. Wiehl.
Inorganic Chemistry | 2014
A. Yakushev; J. M. Gates; A. Türler; M. Schädel; Christoph E. Düllmann; D. Ackermann; Lise-Lotte Andersson; Michael Block; W. Brüchle; Jan Dvorak; K. Eberhardt; H. G. Essel; J. Even; Ulrika Forsberg; A. Gorshkov; R. Graeger; Kenneth E. Gregorich; Willi Hartmann; R.-D. Herzberg; F. P. Heßberger; D. Hild; A. Hübner; Egon Jäger; J. Khuyagbaatar; B. Kindler; Jens Volker Kratz; J. Krier; N. Kurz; B. Lommel; L. Niewisch
The electron shell structure of superheavy elements, i.e., elements with atomic number Z ≥ 104, is influenced by strong relativistic effects caused by the high Z. Early atomic calculations on element 112 (copernicium, Cn) and element 114 (flerovium, Fl) having closed and quasi-closed electron shell configurations of 6d(10)7s(2) and 6d(10)7s(2)7p1/2(2), respectively, predicted them to be noble-gas-like due to very strong relativistic effects on the 7s and 7p1/2 valence orbitals. Recent fully relativistic calculations studying Cn and Fl in different environments suggest them to be less reactive compared to their lighter homologues in the groups, but still exhibiting a metallic character. Experimental gas-solid chromatography studies on Cn have, indeed, revealed a metal-metal bond formation with Au. In contrast to this, for Fl, the formation of a weak bond upon physisorption on a Au surface was inferred from first experiments. Here, we report on a gas-solid chromatography study of the adsorption of Fl on a Au surface. Fl was produced in the nuclear fusion reaction (244)Pu((48)Ca, 3-4n)(288,289)Fl and was isolated in-flight from the primary (48)Ca beam in a physical recoil separator. The adsorption behavior of Fl, its nuclear α-decay product Cn, their lighter homologues in groups 14 and 12, i.e., Pb and Hg, and the noble gas Rn were studied simultaneously by isothermal gas chromatography and thermochromatography. Two Fl atoms were detected. They adsorbed on a Au surface at room temperature in the first, isothermal part, but not as readily as Pb and Hg. The observed adsorption behavior of Fl points to a higher inertness compared to its nearest homologue in the group, Pb. However, the measured lower limit for the adsorption enthalpy of Fl on a Au surface points to the formation of a metal-metal bond of Fl with Au. Fl is the least reactive element in the group, but still a metal.
Science | 2014
J. Even; A. Yakushev; Christoph E. Düllmann; H. Haba; Masato Asai; Tetsuya Sato; H. Brand; A. Di Nitto; R. Eichler; Fangli Fan; Willi Hartmann; M. Huang; E. Jäger; Daiya Kaji; J. Kanaya; Y. Kaneya; J. Khuyagbaatar; B. Kindler; J. V. Kratz; J. Krier; Yuki Kudou; N. Kurz; B. Lommel; Sunao Miyashita; Kosuke Morita; Masashi Murakami; Yuichiro Nagame; Heino Nitsche; K. Ooe; Z. H. Qin
A carbonyl compound that tips the scales Life is short for the heaviest elements. They emerge from high-energy nuclear collisions with scant time for detection before they break up into lighter atoms. Even et al. report that even a few seconds is long enough for carbon to bond to the 106th element, seaborgium (see the Perspective by Loveland). The authors used a custom apparatus to direct the freshly made atoms out of the hot collision environment and through a stream of carbon monoxide and helium. They compared the detected products with theoretical modeling results and conclude that hexacarbonyl Sg(CO)6 was the most likely structural formula. Science, this issue p. 1491; see also p. 1451 A special apparatus enables synthesis of a compound with carbon bonds to a short-lived element produced via nuclear reaction. [Also see Perspective by Loveland] Experimental investigations of transactinoide elements provide benchmark results for chemical theory and probe the predictive power of trends in the periodic table. So far, in gas-phase chemical reactions, simple inorganic compounds with the transactinoide in its highest oxidation state have been synthesized. Single-atom production rates, short half-lives, and harsh experimental conditions limited the number of experimentally accessible compounds. We applied a gas-phase carbonylation technique previously tested on short-lived molybdenum (Mo) and tungsten (W) isotopes to the preparation of a carbonyl complex of seaborgium, the 106th element. The volatile seaborgium complex showed the same volatility and reactivity with a silicon dioxide surface as those of the hexacarbonyl complexes of the lighter homologs Mo and W. Comparison of the product’s adsorption enthalpy with theoretical predictions and data for the lighter congeners supported a Sg(CO)6 formulation.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2009
I. Altarev; G. Ban; Georg Bison; K. Bodek; Martin Burghoff; Milan Cvijovic; M. Daum; P. Fierlinger; E. Gutsmiedl; Gabriele Hampel; W. Heil; R. Henneck; M. Horras; N. V. Khomutov; K. Kirch; St. Kistryn; S. Knappe-Grüneberg; A. Knecht; Paul E. Knowles; A. Kozela; J. V. Kratz; F. Kuchler; M. Kuźniak; T. Lauer; B. Lauss; T. Lefort; A. Mtchedlishvili; O. Naviliat-Cuncic; S. Paul; A. S. Pazgalev
The effort towards a new measurement of the neutron electric dipole moment (nEDM) at the Paul Scherrer Instituts (PSI) new high intensity source of ultracold neutrons (UCN) is described. The experimental technique relies on Ramseys method of separated oscillatory fields, using UCN in vacuum with the apparatus at ambient temperature. In the first phase, R&D towards the upgrade of the RAL/Sussex/ILL apparatus is being performed at the Institut Laue-Langevin (ILL). In the second phase the apparatus, moved from ILL to PSI, will allow an improvement in experimental sensitivity by a factor of 5. In the third phase, a new spectrometer should gain another order of magnitude in sensitivity. The improvements will be mainly due to (1) much higher UCN intensity, (2) improved magnetometry and magnetic field control, and (3) a double chamber configuration with opposite electric field directions.
Inorganic Chemistry | 2012
J. Even; A. Yakushev; Christoph E. Düllmann; Jan Dvorak; R. Eichler; Oliver Gothe; D. Hild; Egon Jäger; J. Khuyagbaatar; Jens Volker Kratz; J. Krier; L. Niewisch; Heino Nitsche; Inna Pysmenetska; M. Schädel; B. Schausten; A. Türler; N. Wiehl; David Wittwer
Carbonyl complexes of radioactive transition metals can be easily synthesized with high yields by stopping nuclear fission or fusion products in a gas volume containing CO. Here, we focus on Mo, W, and Os complexes. The reaction takes place at pressures of around 1 bar at room temperature, i.e., at conditions that are easy to accommodate. The formed complexes are highly volatile. They can thus be transported within a gas stream without major losses to setups for their further investigation or direct use. The rapid synthesis holds promise for radiochemical purposes and will be useful for studying, e.g., chemical properties of superheavy elements.
Radiochimica Acta | 2004
André von Zweidorf; W. Brüchle; Stefan Burger; H. Hummrich; Jens Volker Kratz; B. Kuczewski; G. Langrock; U. Rieth; M. Schädel; N. Trautmann; K. Tsukada; N. Wiehl
Summary Hassium, element 108, was produced in the fusion reaction between 26Mg and 248Cm. The hassium recoils were oxidized in-situ to a highly volatile oxide, presumably HsO4, and were transported in a mixture of He and O2 to a deposition and detection system. The latter consisted of 16 silicon PIN-photodiodes facing a layer of NaOH, which served, in the presence of a certain partial pressure of water in the transport gas, as reactive surface for the deposition of the volatile tetroxides. Six correlated α-decay chains of Hs were detected in the first 5 detectors centred around detection position 3. In analogy to OsO4, which forms Na2[OsO4(OH)2], an osmate(VIII), with aqueous NaOH, HsO4 presumably was deposited as Na2[HsO4(OH)2], a hassate(VIII).
Physical Review Letters | 2015
J. Khuyagbaatar; A. Yakushev; Ch. E. Düllmann; D. Ackermann; L.-L. Andersson; Michael Block; H. Brand; D. M. Cox; J. Even; Ulrika Forsberg; P. Golubev; Willi Hartmann; R.-D. Herzberg; F. P. Heßberger; J. Hoffmann; A. Hübner; E. Jäger; J. Jeppsson; B. Kindler; J. V. Kratz; J. Krier; N. Kurz; B. Lommel; Moumita Maiti; S. Minami; A. K. Mistry; Ch. M. Mrosek; I. Pysmenetska; Dirk Rudolph; Luis Sarmiento
Two short-lived isotopes ^{221}U and ^{222}U were produced as evaporation residues in the fusion reaction ^{50}Ti+^{176}Yb at the gas-filled recoil separator TASCA. An α decay with an energy of E_{α}=9.31(5) MeV and half-life T_{1/2}=4.7(7) μs was attributed to ^{222}U. The new isotope ^{221}U was identified in α-decay chains starting with E_{α}=9.71(5) MeV and T_{1/2}=0.66(14) μs leading to known daughters. Synthesis and detection of these unstable heavy nuclei and their descendants were achieved thanks to a fast data readout system. The evolution of the N=126 shell closure and its influence on the stability of uranium isotopes are discussed within the framework of α-decay reduced width.
Radiochimica Acta | 2014
J. Even; A. Yakushev; Christoph E. Düllmann; Jan Dvorak; R. Eichler; Oliver Gothe; Willy Hartmann; D. Hild; Egon Jäger; J. Khuyagbaatar; B. Kindler; Jens Volker Kratz; J. Krier; B. Lommel; L. Niewisch; Heino Nitsche; Inna Pysmenetska; M. Schädel; B. Schausten; A. Türler; N. Wiehl; David Wittwer
Abstract We report on the in-situ synthesis of metal carbonyl complexes with short-lived isotopes of transition metals. Complexes of molybdenum, technetium, ruthenium and rhodium were synthesized by thermalisation of products of neutron-induced fission of 249Cf in a carbon monoxide-nitrogen mixture. Complexes of tungsten, rhenium, osmium, and iridium were synthesized by thermalizing short-lived isotopes produced in 24Mg-induced fusion evaporation reactions in a carbon monoxide containing atmosphere. The chemical reactions took place at ambient temperature and pressure conditions. The complexes were rapidly transported in a gas stream to collection setups or gas phase chromatography devices. The physisorption of the complexes on Au and SiO2 surfaces was studied. We also studied the stability of some of the complexes, showing that these start to decompose at temperatures above 300 ℃ in contact with a quartz surface. Our studies lay a basis for the investigation of such complexes with transactinides.
Acta Oncologica | 2010
Tobias Schmitz; Matthias Blaickner; C. Schütz; N. Wiehl; Jens Volker Kratz; Niels Bassler; Michael H. Holzscheiter; Hugo Palmans; Peter Sharpe; Gerd Otto; Gabriele Hampel
Abstract To establish Boron Neutron Capture Therapy (BNCT) for non-resectable liver metastases and for in vitro experiments at the TRIGA Mark II reactor at the University of Mainz, Germany, it is necessary to have a reliable dose monitoring system. The in vitro experiments are used to determine the relative biological effectiveness (RBE) of liver and cancer cells in our mixed neutron and gamma field. We work with alanine detectors in combination with Monte Carlo simulations, where we can measure and characterize the dose. To verify our calculations we perform neutron flux measurements using gold foil activation and pin-diodes. Material and methods. When L-α-alanine is irradiated with ionizing radiation, it forms a stable radical which can be detected by electron spin resonance (ESR) spectroscopy. The value of the ESR signal correlates to the amount of absorbed dose. The dose for each pellet is calculated using FLUKA, a multipurpose Monte Carlo transport code. The pin-diode is augmented by a lithium fluoride foil. This foil converts the neutrons into alpha and tritium particles which are products of the 7Li(n,α)3H-reaction. These particles are detected by the diode and their amount correlates to the neutron fluence directly. Results and discussion. Gold foil activation and the pin-diode are reliable fluence measurement systems for the TRIGA reactor, Mainz. Alanine dosimetry of the photon field and charged particle field from secondary reactions can in principle be carried out in combination with MC-calculations for mixed radiation fields and the Hansen & Olsen alanine detector response model. With the acquired data about the background dose and charged particle spectrum, and with the acquired information of the neutron flux, we are capable of calculating the dose to the tissue. Conclusion. Monte Carlo simulation of the mixed neutron and gamma field of the TRIGA Mainz is possible in order to characterize the neutron behavior in the thermal column. Currently we also speculate on sensitizing alanine to thermal neutrons by adding boron compounds.
Journal of Alloys and Compounds | 1998
Jon Petter Omtvedt; J. Alstad; K. Eberhardt; K Fure; R. Malmbeck; M. Mendel; A. Nähler; Gunnar Skarnemark; N. Trautmann; N. Wiehl; B. Wierczinski
Abstract The performance of the SISAK 1 liquid–liquid extraction system applied in transactinide experiments has been improved with respect to the equipment itself and the way it is operated. The improvements were checked in on-line experiments, under conditions similar to those during transactinide experiments. As a result, the yield of the separation system was increased by a factor >5. Furthermore, a cleaner organic scintillation phase was obtained due to a better phase separation. This reduced the β-background, which disturbs the α-measurements. The sensitivity of the SISAK apparatus, including the gasjet and the detection system has been improved by more than one order of magnitude.
Radiochimica Acta | 2016
I. Usoltsev; R. Eichler; Yuezhao Wang; J. Even; A. Yakushev; H. Haba; M. Asai; H. Brand; A. Di Nitto; Ch. E. Düllmann; F. Fangli; Willi Hartmann; M. Huang; Egon Jäger; Daiya Kaji; J. Kanaya; Y. Kaneya; J. Khuyagbaatar; B. Kindler; J. V. Kratz; J. Krier; Yuki Kudou; N. Kurz; B. Lommel; Sunao Miyashita; Kosuke Morita; Masashi Murakami; Y. Nagame; Heino Nitsche; K. Ooe
Abstract Chemical studies of superheavy elements require fast and efficient techniques, due to short half-lives and low production rates of the investigated nuclides. Here, we advocate for using a tubular flow reactor for assessing the thermal stability of the Sg carbonyl complex – Sg(CO)6. The experimental setup was tested with Mo and W carbonyl complexes, as their properties are established and supported by theoretical predictions. The suggested approach proved to be effective in discriminating between the thermal stabilities of Mo(CO)6 and W(CO)6. Therefore, an experimental verification of the predicted Sg–CO bond dissociation energy seems to be feasible by applying this technique. By investigating the effect of 104,105Mo beta-decay on the formation of 104,105Tc carbonyl complex, we estimated the lower reaction time limit for the metal carbonyl synthesis in the gas phase to be more than 100 ms. We examined further the influence of the wall material of the recoil chamber, the carrier gas composition, the gas flow rate, and the pressure on the production yield of 104Mo(CO)6, so that the future stability tests with Sg(CO)6 can be optimized accordingly.