N. Y. Garces
West Virginia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N. Y. Garces.
Applied Physics Letters | 2002
N. Y. Garces; Lijun Wang; L. Bai; N. C. Giles; L. E. Halliburton; G. Cantwell
Electron paramagnetic resonance (EPR), photoluminescence, and infrared optical absorption have been used to investigate a ZnO crystal before and after a thermal anneal for 1 h in air at 900 °C. The sample was an undoped high quality crystal grown by the chemical vapor transport method. In addition to shallow donor impurities, the crystal contained trace amounts of copper ions. Prior to the thermal anneal, these ions were all in the Cu+ (3d10) state and the observed luminescence at 5 K, produced by 364 nm light, consisted of a broad structureless band peaking at 500 nm. After the high-temperature anneal, the Cu2+ (3d9) EPR spectrum was observed and the luminescence had changed significantly. The emission then peaked near 510 nm and showed structure identical to that reported by Dingle [Phys. Rev. Lett. 23, 579 (1969)]. Our data reaffirm that the structured green emission in ZnO is associated with Cu2+ ions. We suggest that the unstructured green emission (observed before the high-temperature anneal) is don...
Applied Physics Letters | 2002
N. Y. Garces; N. C. Giles; L. E. Halliburton; G. Cantwell; D. B. Eason; D. C. Reynolds; David C. Look
Nitrogen acceptors are formed when undoped single crystals of zinc oxide (ZnO) grown by the chemical-vapor transport method are annealed in air or nitrogen atmosphere at temperatures between 600 and 900 °C. After an anneal, an induced near-edge absorption band causes the crystals to appear yellow. Also, the concentration of neutral shallow donors, as monitored by electron paramagnetic resonance (EPR), is significantly reduced. A photoinduced EPR signal due to neutral nitrogen acceptors is observed when the annealed crystals are exposed to laser light (e.g., 364, 442, 458, or 514 nm) at low temperature. The nitrogens are initially in the nonparamagnetic singly ionized state (N−) in an annealed crystal, because of the large number of shallow donors, and the light converts a portion of them to the paramagnetic neutral acceptor state (N0).
Applied Physics Letters | 2004
Yuri M. Strzhemechny; Howard L. Mosbacker; David C. Look; D. C. Reynolds; C. W. Litton; N. Y. Garces; N. C. Giles; L. E. Halliburton; Shigeru Niki; L. J. Brillson
We demonstrate that remote plasma hydrogenation can increase electron concentrations in ZnO single crystals by more than an order of magnitude. We investigated the effects of this treatment on Hall concentration and mobility as well as on the bound exciton emission peak I4 for a variety of ZnO single crystals–bulk air annealed, Li doped, and epitaxially grown on sapphire. Hydrogen increases I4 intensity in conducting samples annealed at 500 and 600 °C and partially restores emission in the I4 range for Li-diffused ZnO. Hydrogenation increases carrier concentration significantly for the semi-insulating Li doped and epitaxial thin film samples. These results indicate a strong link between the incorporation of hydrogen, increased donor-bound exciton PL emission, and increased n-type conductivity.
Applied Physics Letters | 2005
L. E. Halliburton; N. C. Giles; N. Y. Garces; Ming Luo; Chunchuan Xu; Lihai Bai; L. A. Boatner
Zinc oxide crystals grown by the seeded chemical vapor transport method have been annealed in zinc vapor at 1100 °C for 30 min. These thermochemical reduction treatments produce a deep red coloration in the crystals and increase their n-type electrical conductivity. Electron paramagnetic resonance (EPR), optical absorption, and Hall measurements were used to monitor changes in the crystals. After an anneal, an intense optical absorption band is present that extends from the band edge out to approximately 550 nm, and the EPR signal near g=1.96 (due to shallow donors and/or conduction-band electrons), the free-carrier absorption, and the Hall electron concentration are all larger. Hydrogen was not present during these anneals, thus leaving oxygen vacancies and zinc interstitials as candidates for the added donors. Neutral oxygen vacancies are produced at high temperature by the additive-coloration mechanism, and are responsible for the broad near-edge absorption band. The observed increase in the number of ...
Journal of Applied Physics | 2004
L. E. Halliburton; Lijun Wang; Lihua Bai; N. Y. Garces; N. C. Giles; Michael J. Callahan; Buguo Wang
An intense infrared absorption band has been observed in a hydrothermally grown ZnO crystal. At 12K, the band peaks near 3577.3cm−1 and has a half width of 0.40cm−1, and at 300K, the band peaks at 3547cm−1 and has a half width of 41.3cm−1. This absorption band is highly polarized, with its maximum intensity occurring when the electric field of the measuring light is parallel to the c axis of the crystal. Photoinduced electron-paramagnetic-resonance experiments show that the crystal contains lithium acceptors (i.e., lithium ions occupying zinc sites). Lithium and OH− ions are present in the crystal because lithium carbonate, sodium hydroxide, and potassium hydroxide are used as solvents during the hydrothermal growth. In the as-grown crystal, some of the lithium acceptors will have an OH− ion located at an adjacent axial oxygen site (to serve as a passivator), and we assign the 3577.3-cm−1 band observed at 12K to these neutral complexes. Our results illustrate the role of hydrogen as a charge compensator f...
Journal of Applied Physics | 2003
N. Y. Garces; Lijun Wang; N. C. Giles; L. E. Halliburton; G. Cantwell; D. B. Eason
Electron paramagnetic resonance (EPR) has been used to investigate molecular nitrogen and isolated nitrogen acceptors in single crystals of ZnO. These samples were grown by the seeded chemical vapor transport method with N2 added to the gas stream. A five-line EPR spectrum is observed at low temperature in the as-grown bulk crystals and is assigned to N2− molecules substituting for oxygen. This structure arises from nearly equal hyperfine interactions with two nitrogen nuclei (14N, 99.63% abundant, I=1). The spin Hamiltonian parameters for the N2− center are g∥=2.0036, g⊥=1.9935, A∥=9.8 MHz, and A⊥=20.1 MHz, with the unique directions parallel to the c axis. Laser excitation at 9 K, with 325 or 442 nm light, eliminates the N2− spectrum (when the N2− convert to N20) and independently introduces the EPR spectrum due to isolated nitrogen acceptors (when N− acceptors convert to N0). Removing the laser light and warming to approximately 100 K restores the crystal to its preilluminated state. In separate experi...
Journal of Applied Physics | 2001
N. Y. Garces; K. T. Stevens; L. E. Halliburton; Stavros G. Demos; H. B. Radousky; N. P. Zaitseva
Electron paramagnetic resonance (EPR) has been used to characterize a hole trap and several electron traps in single crystals of potassium dihydrogen phosphate (KH2PO4 or KDP). The paramagnetic charge states of these centers are produced by ionizing radiation (e.g., x rays or a 266 nm beam from a pulsed Nd:YAG laser) and are stable for days and even weeks at room temperature. One center consists of a hole trapped on an oxygen ion adjacent to a silicon impurity located on a phosphorus site. This defect has a small, but easily observed, hyperfine interaction with the adjacent substitutional proton. The other centers are formed when an electron is trapped at an oxygen vacancy. These latter defects are best described as (PO3)2− molecular ions, where the primary phosphorus nucleus is responsible for a large hyperfine splitting (500–800 G in magnitude). Five EPR spectra representing variations of these oxygen vacancy centers are observed, with the differences being attributed to the relative position of a nearb...
Journal of Applied Physics | 2003
N. C. Giles; Lihua Bai; M. M. Chirila; N. Y. Garces; K. T. Stevens; Peter G. Schunemann; S. D. Setzler; T. M. Pollak
An optical absorption investigation from 10 to 296 K has been performed on bulk crystals of ZnGeP2 grown by the horizontal-gradient-freeze method. We identify three broad absorption bands in the spectral range from 1 to 4 μm that are due to native defects. At low temperature, a band peaking near 1.2 μm and another band peaking near 2.2 μm have intensities that correlate. The strength of these two absorption bands can be increased or decreased by illuminating the crystal with selected laser wavelengths. The 2.2 μm band is strongly polarized, with its greatest intensity occurring when E is parallel to the c axis of the crystal. A third absorption band, peaking near 2.3 μm and extending from 1.5 μm to beyond 4 μm, was observed at low temperature, during and immediately after illumination. Comparison of photoinduced changes in absorption with photoinduced changes in electron paramagnetic resonance spectra allowed specific defects to be associated with each of the three absorption bands. Both the 1.2 and the 2...
Applied Physics Letters | 1999
K. T. Stevens; N. Y. Garces; L. E. Halliburton; M. Yan; N. P. Zaitseva; J.J. DeYoreo; G. C. Catella; J. R. Luken
The intrinsic “self-trapped” hole center in KD2PO4 crystals has been identified using electron paramagnetic resonance and electron-nuclear double resonance. These defects, labeled [D2PO4]o centers, can be formed at 77 K by irradiating with either 60 kV x rays or the fourth harmonic (266 nm) of a pulsed Nd:YAG laser. The hole is equally shared by two adjacent oxygen ions, and hyperfine interactions with one phosphorus and two equivalent deuterons are observed. The sample used in this investigation was approximately 80% deuterated, thus both [D2PO4]o and [HDPO4]o centers were detected, with the former being dominant. These intrinsic self-trapped hole centers are of interest because of their potential role in the transient optical absorption produced in KD2PO4 crystals at room temperature by intense 266 nm laser pulses.
Journal of Applied Physics | 2003
M. M. Chirila; N. Y. Garces; L. E. Halliburton; Stavros G. Demos; T. A. Land; H. B. Radousky
Optical absorption and electron paramagnetic resonance (EPR) techniques have been used to characterize the production and thermal decay of point defects in undoped single crystals of KD2PO4 grown at Lawrence Livermore National Laboratory. A crystal was irradiated at 77 K with x rays, and then warmed to room temperature. Immediately after irradiation, broad optical absorption bands were observed to peak near 230, 390, and 550 nm. During warming, these absorption bands thermally decayed in the 80–140 K range. Another absorption band peaking near 450 nm appeared as the three bands disappeared. This last band decayed between 140 and 240 K. Correlations with EPR data suggest that the band at 230 nm is associated with interstitial deuterium atoms, the two bands at 390 and 550 nm are associated with self-trapped holes, and the band at 450 nm is associated with holes trapped adjacent to deuterium vacancies. Additional EPR spectra from several oxygen-vacancy centers and a silicon-associated hole center were observ...