Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where N. Ysard is active.

Publication


Featured researches published by N. Ysard.


Astronomy and Astrophysics | 2011

The global dust SED: tracing the nature and evolution of dust with DustEM

M. Compiegne; L. Verstraete; Andrew Jones; J. P. Bernard; F. Boulanger; Nicolas Flagey; J. Le Bourlot; D. Paradis; N. Ysard

The Planck and Herschel missions are currently measuring the far-infrared to millimeter emission of dust, which combined with existing IR data, will for the first time provide the full spectral energy distribution (SED) of the galactic interstellar medium dust emission, from the mid-IR to the mm range, with an unprecedented sensitivity and down to spatial scales ∼30 �� . Such a global SED will allow a systematic study of the dust evolution processes (e.g. grain growth or fragmentation) that directly affect the SED because they redistribute the dust mass among the observed grain sizes. The dust SED is also affected by variations of the radiation field intensity. Here we present a versatile numerical tool, DustEM, that predicts the emission and extinction of dust grains given their size distribution and their optical and thermal properties. In order to model dust evolution, DustEM has been designed to deal with a variety of grain types, structures and size distributions and to be able to easily include new dust physics. We use DustEM to model the dust SED and extinction in the diffuse interstellar medium at high-galactic latitude (DHGL), a natural reference SED that will allow us to study dust evolution. We present a coherent set of observations for the DHGL SED, which has been obtained by correlating the IR and HI-21 cm data. The dust components in our DHGL model are (i) polycyclic aromatic hydrocarbons; (ii) amorphous carbon and (iii) amorphous silicates. We use amorphous carbon dust, rather than graphite, because it better explains the observed high abundances of gas-phase carbon in shocked regions of the interstellar medium. Using the DustEM model, we illustrate how, in the optically thin limit, the IRAS/Planck HFI (and likewise Spitzer/Herschel for smaller spatial scales) photometric band ratios of the dust SED can disentangle the influence of the exciting radiation field intensity and constrain the abundance of small grains (a < 10 nm) relative to the larger grains. We also discuss the contributions of the different grain populations to the IRAS, Planck (and similarly to Herschel) channels. Such information is required to enable a study of the evolution of dust as well as to systematically extract the dust thermal emission from CMB data and to analyze the emission in the Planck polarized channels. The DustEM code described in this paper is publically available. Dust plays a key role in the physics (e.g. heating of the gas, coupling to the magnetic field) and chemistry (formation of H2, shielding of molecules from dissociative radiation) of the interstellar medium (ISM). Heated by stellar photons, dust grains radiate away the absorbed energy by emission in the near-IR to mm range. Dust emission can thus be used as a tracer of the radiation field intensity and, hence, of star formation activity. Assuming a constant dust abundance, the far-IR to mm dust emission is also used to derive the total column density along a line of sight and to provide mass estimates. The impact of dust on the ISM and the use of its emission as a tracer of the local conditions depends on the dust properties and abundances. It is therefore of major importance to understand dust properties and their evolution throughout the ISM. The instruments onboard the Herschel and Planck satel


Astronomy and Astrophysics | 2012

Galactic cold cores - III. General cloud properties

M. Juvela; I. Ristorcelli; L. Pagani; Yasuo Doi; V.-M. Pelkonen; D. J. Marshall; J.-P. Bernard; E. Falgarone; J. Malinen; G. Marton; P. McGehee; L. Montier; F. Motte; R. Paladini; L. V. Tóth; N. Ysard; Sarolta Zahorecz; A. Zavagno

Context. In the project galactic cold cores we are carrying out Herschel photometric observations of cold regions of the interstellar clouds as previously identified with the Planck satellite. The aim of the project is to derive the physical properties of the population of cold clumps and to study its connection to ongoing and future star formation. Aims. We examine the cloud structure around the Planck detections in 71 fields observed with the Herschel SPIRE instrument by the summer of 2011. We wish to determine the general physical characteristics of the fields and to examine the morphology of the clouds where the cold high column density clumps are found. Methods. Using the Herschel SPIRE data, we derive colour temperature and column density maps of the fields. Together with ancillary data, we examine the infrared spectral energy distributions of the main clumps. The clouds are categorised according to their large scale morphology. With the help of recently released WISE satellite data, we look for signs of enhanced mid-infrared scattering (”coreshine”), an indication of growth of the dust grains, and have a first look at the star formation activity associated with the cold clumps. Results. The mapped clouds have distances ranging from similar to 100 pc to several kiloparsecs and cover a range of sizes and masses from cores of less than 10 M-circle dot to clouds with masses in excess of 10 000 M-circle dot. Most fields contain some filamentary structures and in about half of the cases a filament or a few filaments dominate the morphology. In one case out of ten, the clouds show a cometary shape or have sharp boundaries indicative of compression by an external force. The width of the filaments is typically similar to 0.2-0.3 pc. However, there is significant variation from 0.1 pc to 1 pc and the estimates are sensitive to the methods used and the very definition of a filament. Enhanced mid-infrared scattering, coreshine, was detected in four clouds with six additional tentative detections. The cloud LDN183 is included in our sample and remains the best example of this phenomenon. About half of the fields are associated with active star formation as indicated by the presence of mid-infrared point sources. The mid-infrared sources often coincide with structures whose sub-millimetre spectra are still dominated by the cold dust.


Astronomy and Astrophysics | 2010

Submillimeter to centimeter excess emission from the Magellanic Clouds - II. On the nature of the excess

Caroline Bot; N. Ysard; D. Paradis; J.-P. Bernard; Guilaine Lagache; F. P. Israel; William F. Wall

Context. Dust emission at sub-millimeter to centimeter wavelengths is often simply the Rayleigh-Jeans tail of dust particles at thermal equilibrium and is used as a cold mass tracer in various environments, including nearby galaxies. However, well-sampled spectral energy distributions of the nearby, star-forming Magellanic Clouds have a pronounced (sub-)millimeter excess. Aims. This study attempts to confirm the existence of this millimeter excess above expected dust, free-free and synchrotron emission and to explore different possibilities for its origin. Methods. We model near-infrared to radio spectral energy distributions of the Magellanic Clouds with dust, free-free, and synchrotron emission. A millimeter excess emission is confirmed above these components and its spectral shape and intensity are analyzed in light of different scenarios: very cold dust, cosmic microwave background (CMB) fluctuations, a change of the dust spectral index and spinning dust emission. Results. We show that very cold dust or CMB fluctuations are very unlikely explanations for the observed excess in these two galaxies. The excess in the Large Magellanic Cloud can be satisfactorily explained either by a change of the spectral index related to intrinsic properties of amorphous grains, or by spinning dust emission. In the Small Magellanic Cloud, however, the excess is larger and the dust grain model including TLS/DCD effects cannot reproduce the observed emission in a simple way. A possible solution was achieved with spinning dust emission, but many assumptions on the physical state of the interstellar medium had to be made. Conclusions. Further studies, with higher resolution data from Planck and Herschel are needed to probe the origin of this observed submillimeter-centimeter excess more definitely. Our study shows that the different possible origins will be best distinguished where the excess is the highest, as is the case in the Small Magellanic Cloud.


Astronomy and Astrophysics | 2011

Galactic cold cores - II. Herschel study of the extended dust emission around the first Planck detections

M. Juvela; I. Ristorcelli; V.-M. Pelkonen; D. J. Marshall; L. Montier; J.-P. Bernard; R. Paladini; T. Lunttila; Alain Abergel; P. André; C. Dickinson; X. Dupac; J. Malinen; P. G. Martin; P. McGehee; L. Pagani; N. Ysard; A. Zavagno

Context. Within the project Galacticcoldcores we are carrying out Herschel photometric observations of cold interstellar clouds detected with the Planck satellite. The three fields observed as part of the Herschel science demonstration phase (SDP) provided the first glimpse into the nature of these sources. The aim of the project is to derive the physical properties of the full cold core population revealed by Planck. Aims: We examine the properties of the dust emission within the three fields observed during the SDP. We determine the dust sub-millimetre opacity, look for signs of spatial variations in the dust spectral index, and estimate how the apparent variations of the parameters could be affected by different sources of uncertainty. Methods: We use the Herschel observations where the zero point of the surface brightness scale is set with the help of the Planck satellite data. We derive the colour temperature and column density maps of the regions and determine the dust opacity by a comparison with extinction measurements. By simultaneously fitting the colour temperature and the dust spectral index values we look for spatial variations in the apparent dust properties. With a simple radiative transfer model we estimate to what extent these can be explained by line-of-sight temperature variations, without changes in the dust grain properties. Results: The analysis of the dust emission reveals cold and dense clouds that coincide with the Planck sources and confirm those detections. The derived dust opacity varies in the range κ(250 μm) ~ 0.05-0.2 cm2 g-1, higher values being observed preferentially in regions of high column density. The average dust spectral index β is ~1.9-2.2. There are indications that β increases towards the coldest regions. The spectral index decreases strongly near internal heating sources but, according to radiative transfer models, this can be explained by the line-of-sight temperature variations without a change in the dust properties. Planck (http://www.esa.int/Planck) is a project of the European Space Agency - ESA - with instruments provided by two scientific consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices are only available in electronic form at http://www.aanda.org


Astronomy and Astrophysics | 2010

Submillimeter to centimeter excess emission from the Magellanic Clouds I. Global spectral energy distribution

F. P. Israel; William F. Wall; D. Raban; William T. Reach; Caroline Bot; J. B. R. Oonk; N. Ysard; J.-P. Bernard

Aims. Our goal is to determine and study the global emission from the Magellanic Clouds over the full radio to ultraviolet spectral range. Methods. We have selected from the literature those flux densities that include the entire LMC and SMC respectively, and we have complemented these with maps extracted from the WMAP and COBE databases covering the missing 23–90 GHz (13–3.2 mm) and the poorly sampled 1.25–250 THz (240–1.25 μm) spectral ranges in order to reconstruct the global SEDs of the Magellanic Clouds over eight decades in frequency or wavelength. Results. A major result is the discovery of a pronounced excess of emission from the Magellanic Clouds at millimeter and submillimeter wavelengths. We also confirm global mid-infrared (12 μm) emission suppression, and determine accurate thermal radio fluxes and very low global extinctions for both LMC and SMC, the latter being the most extreme in all these respects. Conclusions. These and other dust properties such as the far-UV extinction curve appear to be correlated with (low) metallicity. Possible explanations are briefly considered. As long as the nature of the excess emission is unknown, the total dust masses and gas-to-dust ratios of the Magellanic Clouds cannot reliably be determinedContext. Dust emission at sub-millimeter to centimeter wavelengths is often simply the Rayleigh-Jeans tail of dust particles at thermal equilibrium and is used as a cold mass tracer in various environments, including nearby galaxies. However, well-sampled spectral energy distributions of the nearby, star-forming Magellanic Clouds have a pronounced (sub-)millimeter excess. Aims. This study attempts to confirm the existence of this millimeter excess above expected dust, free-free and synchrotron emission and to explore different possibilities for its origin. Methods. We model near-infrared to radio spectral energy distributions of the Magellanic Clouds with dust, free-free, and synchrotron emission. A millimeter excess emission is confirmed above these components and its spectral shape and intensity are analyzed in light of different scenarios: very cold dust, cosmic microwave background (CMB) fluctuations, a change of the dust spectral index and spinning dust emission. Results. We show that very cold dust or CMB fluctuations are very unlikely explanations for the observed excess in these two galaxies. The excess in the Large Magellanic Cloud can be satisfactorily explained either by a change of the spectral index related to intrinsic properties of amorphous grains, or by spinning dust emission. In the Small Magellanic Cloud, however, the excess is larger and the dust grain model including TLS/DCD effects cannot reproduce the observed emission in a simple way. A possible solution was achieved with spinning dust emission, but many assumptions on the physical state of the interstellar medium had to be made. Conclusions. Further studies, with higher resolution data from Planck and Herschel are needed to probe the origin of this observed submillimeter-centimeter excess more definitely. Our study shows that the different possible origins will be best distinguished where the excess is the highest, as is the case in the Small Magellanic Cloud.


Astronomy and Astrophysics | 2012

The effect of temperature mixing on the observable (T, β)-relation of interstellar dust clouds

M. Juvela; N. Ysard

Detailed studies of the shape of dust emission spectra are possible thanks to the current instruments capable of observations in several sub-millimetre bands (e.g., Herschel and Planck). However, some controversy remains even on the basic effects resulting from the mixing of temperatures along the line-of-sight. Studies have suggested either a positive or a negative correlation between the colour temperature T_C and the observed spectral index beta_Obs. Our aim is to show that both cases are possible and to determine the factors leading to either behaviour. We start by studying the sum of two or three modified black bodies of different temperature. With radiative transfer modelling, we examine the probability distributions of the dust mass as a function of the physical dust temperature. With these results as a guideline, we examine the (T_C, beta_Obs) relations for different sets of clouds. Even in the case of modified blackbodies at temperatures T_0 and T_0+ Delta T_0, the correlation between T_C and beta_Obs can be either positive or negative. If one compares models where Delta T_0 is varied, the correlation is negative. If the models differ in their mean temperature T_0 rather than in Delta T_0, the correlation remains positive. Radiative transfer models show that externally heated clouds have different mean temperatures but the widths of their temperature distributions are rather similar. Thus, the correlation between T_C and beta_Obs is expected to be positive. The same result applies to clouds illuminated by external radiation fields of different intensity. For internally heated clouds a negative correlation is the more likely alternative. If the signal-to-noise ratio is high, the observed negative correlation could be explained by the temperature dependence of the dust optical properties but that intrinsic dependence could be even steeper than the observed one.


Astronomy and Astrophysics | 2012

The degeneracy between the dust colour temperature and the spectral index - The problem of multiple χ2 minima

M. Juvela; N. Ysard

Context. With the current Herschel and Planck satellite missions, there is strong interest in the interpretation of the details of the sub-millimetre dust emission spectra. The data contain information on the properties of the interstellar clouds and the physics of the dust grains. A lot of work has been done to understand the negative correlation observed between the spectral index βObs and the colour temperature TC that in the χ 2 fits is partly caused by the observational noise. Aims. In the (TC, βObs) plane, the confidence regions are elongated, banana-shaped structures. Previous studies have indicated that the errors may exhibit strongly asymmetric features that have important consequences for the investigation of individual objects and the interpretation of the relation between the TC and βObs parameters. We study under which conditions the confidence regions exhibit such anomalous, strongly non-Gaussian behaviour that could affect the interpretation of the observed (TC, βObs) relations. Methods. We examined a set of modified black body spectra and spectra calculated from radiative transfer models of filamentary interstellar clouds. We analysed simulated observations at discrete wavelengths between 100 μm and 850 μm. We performed modified black body fits and examined the structure of the χ 2 (TC ,β Obs) function of the fits. Results. We demonstrate cases where, when the signal-to-noise ratio is low, the χ 2 has multiple local minima in the (TC ,β Obs )p lane. A small change in the weighting of the data points can cause the solution to jump to completely different values. In particular, if there is noise, the analysis of spectra with T > 10 K and βObs < 2 can lead to a separate population of solutions with much lower colour temperature and higher spectral indices. The anomalies are caused by the noise. However, the tendency to show multiple χ 2 minima depends on the model (in part via the influence on the signal-to-noise ratios) and on the set of wavelengths included in the analysis. Deviations from the underlying assumption of a single modified black body spectrum are not significant. Conclusions. The presence of several local minima implies that the results obtained from the χ 2 minimisation depend on the starting point of the optimisation and may correspond to non-global minima. Because of the strongly non-Gaussian nature of the errors, the obtained (TC ,β Obs) distribution may be contaminated by a few solutions with unrealistically low colour temperatures and high spectral indices. Proper weighting must be applied to avoid the determination of the βObs(TC) relation to be unduly affected by these measurements.


The Astrophysical Journal | 2011

ON THE GAS TEMPERATURE OF MOLECULAR CLOUD CORES

M. Juvela; N. Ysard

We investigate the uncertainties affecting the temperature profiles of dense cores of interstellar clouds. In regions shielded from external ultraviolet radiation, the problem is reduced to the balance between cosmic ray heating, line cooling, and the coupling between gas and dust. We show that variations in the gas phase abundances, the grain size distribution, and the velocity field can each change the predicted core temperatures by one or two degrees. We emphasize the role of non-local radiative transfer effects that often are not taken into account, for example, when modelling the core chemistry. These include the radiative coupling between regions of different temperature and the enhanced line cooling near the cloud surface. The uncertainty of the temperature profiles does not necessarily translate to a significant error in the column density derived from observations. However, depletion processes are very temperature sensitive and a two degree difference can mean that a given molecule no longer traces the physical conditions in the core centre.


Astronomy and Astrophysics | 2011

Modelling the spinning dust emission from dense interstellar clouds

N. Ysard; M. Juvela; L. Verstraete

Context. Electric dipole emission arising from rapidly rotating Polycyclic Aromatic Hydrocarbons (PAHs) is often invoked to explain the anomalous microwave emission. This assignation is based on i) an observed tight correlation between the mid-IR emission of PAHs and the anomalous microwave emission; and ii) a good agreement between models of spinning dust and the broadband anomalous microwave emission spectrum. So far often detected at large scale in the di use interstellar medium, the anomalous microwave emission has recently been studied in detail in well-known dense molecular clouds with the help of Planck data. Aims. While much attention has been given to the physics of spinning dust emission, the impact of varying local physical conditions has not yet been considered in detail. Our aim is to study the emerging spinning dust emission from interstellar clouds with realistic physical conditions and radiative transfer. Methods. We use the DustEM code to describe the extinction and IR emission of all dust populations. The spinning dust emission is obtained with SpDust, which we have coupled to DustEM. We carry out full radiative transfer simulations and carefully estimate the local gas state as a function of position within interstellar clouds. Results. We show that the spinning dust emission is sensitive to the abundances of the major ions (Hii, Cii) and we propose a simple scheme to estimate these abundances. We also investigate the e ect of changing the cosmic-ray rate. In dense media, where radiative transfer is mandatory to estimate the temperature of the grains, we show that the relationship between the spinning and mid-IR emissivities of PAHs is no longer linear and that the spinning dust emission may actually be strong at the centre of clouds where the mid-IR PAH emission is weak. These results provide new ways to trace grain growth from di use to dense medium and will be useful for the analysis of anomalous microwave emission at the scale of interstellar clouds.


Astronomy and Astrophysics | 2012

Reliability of NH3 as the temperature probe of cold cloud cores

M. Juvela; J. Harju; N. Ysard; T. Lunttila

Context. The temperature is a central parameter affecting the chemical and physical properties of dense cores of interstellar clouds and their potential evolution towards star formation. The chemistry and the dust properties are temperature dependent and, therefore, interpretation of any observation requires the knowledge of the temperature and its variations. Direct measurement of the gas kinetic temperature is possible with molecular line spectroscopy, the ammonia molecule, NH3, being the most commonly used tracer. Aims. We want to determine the accuracy of the temperature estimates derived from ammonia spectra. The normal interpretation of NH3 observations assumes that all the hyperfine line components are tracing the same volume of gas. However, in the case of strong temperature gradients they may be sensitive to different layers and this could cause errors in the optical depth and gas temperature estimates.

Collaboration


Dive into the N. Ysard's collaboration.

Top Co-Authors

Avatar

M. Juvela

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar

J.-P. Bernard

Paul Sabatier University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Paladini

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

J. Malinen

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar

A. Zavagno

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. McGehee

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

L. Pagani

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge