Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naama Barnea-Goraly is active.

Publication


Featured researches published by Naama Barnea-Goraly.


Biological Psychiatry | 2004

White matter structure in autism: preliminary evidence from diffusion tensor imaging.

Naama Barnea-Goraly; Hower Kwon; Vinod Menon; Stephan Eliez; Linda Lotspeich; Allan L. Reiss

BACKGROUND Individuals with autism have severe difficulties in social communication and relationships. Prior studies have suggested that abnormal connections between brain regions important for social cognition may contribute to the social deficits seen in autism. METHODS In this study, we used diffusion tensor imaging to investigate white matter structure in seven male children and adolescents with autism and nine age-, gender-, and IQ-matched control subjects. RESULTS Reduced fractional anisotropy (FA) values were observed in white matter adjacent to the ventromedial prefrontal cortices and in the anterior cingulate gyri as well as in the temporoparietal junctions. Additional clusters of reduced FA values were seen adjacent to the superior temporal sulcus bilaterally, in the temporal lobes approaching the amygdala bilaterally, in occipitotemporal tracts, and in the corpus callosum. CONCLUSIONS Disruption of white matter tracts between regions implicated in social functioning may contribute to impaired social cognition in autism.


The Journal of Neuroscience | 2007

More Is Not Always Better: Increased Fractional Anisotropy of Superior Longitudinal Fasciculus Associated with Poor Visuospatial Abilities in Williams Syndrome

Fumiko Hoeft; Naama Barnea-Goraly; Brian W. Haas; Golijeh Golarai; Derek Ng; Debra L. Mills; Julie R. Korenberg; Ursula Bellugi; Albert M. Galaburda; Allan L. Reiss

We used diffusion tensor imaging to examine white matter integrity in the dorsal and ventral streams among individuals with Williams syndrome (WS) compared with two control groups (typically developing and developmentally delayed) and using three separate analysis methods (whole brain, region of interest, and fiber tractography). All analysis methods consistently showed that fractional anisotropy (FA; a measure of microstructural integrity) was higher in the right superior longitudinal fasciculus (SLF) in WS compared with both control groups. There was a significant association with deficits in visuospatial construction and higher FA in WS individuals. Comparable increases in FA across analytic methods were not observed in the left SLF or the bilateral inferior longitudinal fasciculus in WS subjects. Together, these findings suggest a specific role of right SLF abnormality in visuospatial construction deficits in WS.


Biological Psychiatry | 2003

Decreased N-Acetylaspartate in children with familial bipolar disorder

Kiki D. Chang; Nancy E. Adleman; Kimberly A. Dienes; Naama Barnea-Goraly; Allan L. Reiss; Terence A. Ketter

BACKGROUND Relatively low levels of brain N-acetylaspartate, as measured by magnetic resonance spectroscopy, may indicate decreased neuronal density or viability. Dorsolateral prefrontal levels of N-acetylaspartate have been reported to be decreased in adults with bipolar disorder. We used proton magnetic resonance spectroscopy to investigate dorsolateral prefrontal N-acetylaspartate levels in children with familial bipolar disorder. METHODS Subjects were 15 children and adolescents with bipolar disorder, who each had at least one parent with bipolar disorder, and 11 healthy controls. Mean age was 12.6 years for subjects and controls. Subjects were allowed to continue current medications. Proton magnetic resonance spectroscopy at 3-Tesla was used to study 8 cm(3) voxels placed in left and right dorsolateral prefrontal cortex. RESULTS Bipolar subjects had lower N-acetylaspartate/Creatine ratios only in the right dorsolateral prefrontal cortex (p <.02). No differences in myoinositol or choline levels were found. CONCLUSIONS Children and adolescents with bipolar disorder may have decreased dorsolateral prefrontal N-acetylaspartate, similar to adults with BD, indicating a common neuropathophysiology. Longitudinal studies of at-risk children before the onset and during the early course of bipolar disorder are needed to determine the role of prefrontal N-acetylaspartate as a possible risk marker and/or indication of early bipolar illness progression.


Biological Psychiatry | 2009

Limbic and Corpus Callosum Aberrations in Adolescents with Bipolar Disorder: A Tract-Based Spatial Statistics Analysis

Naama Barnea-Goraly; Kiki D. Chang; Asya Karchemskiy; Meghan Howe; Allan L. Reiss

BACKGROUND Bipolar disorder (BD) is a common and debilitating condition, often beginning in adolescence. Converging evidence from genetic and neuroimaging studies indicates that white matter abnormalities may be involved in BD. In this study, we investigated white matter structure in adolescents with familial bipolar disorder using diffusion tensor imaging (DTI) and a whole brain analysis. METHODS We analyzed DTI images using tract-based spatial statistics (TBSS), a whole-brain voxel-by-voxel analysis, to investigate white matter structure in 21 adolescents with BD, who also were offspring of at least one parent with BD, and 18 age- and IQ-matched control subjects. Fractional anisotropy (FA; a measure of diffusion anisotropy), trace values (average diffusivity), and apparent diffusion coefficient (ADC; a measure of overall diffusivity) were used as variables in this analysis. In a post hoc analysis, we correlated between FA values, behavioral measures, and medication exposure. RESULTS Adolescents with BD had lower FA values than control subjects in the fornix, the left mid-posterior cingulate gyrus, throughout the corpus callosum, in fibers extending from the fornix to the thalamus, and in parietal and occipital corona radiata bilaterally. There were no significant between-group differences in trace or ADC values and no significant correlation between behavioral measures, medication exposure, and FA values. CONCLUSIONS Significant white matter tract alterations in adolescents with BD were observed in regions involved in emotional, behavioral, and cognitive regulation. These results suggest that alterations in white matter are present early in the course of disease in familial BD.


American Journal of Medical Genetics | 2003

White matter tract alterations in fragile X syndrome: Preliminary evidence from diffusion tensor imaging

Naama Barnea-Goraly; Stephan Eliez; Maj Hedeus; Vinod Menon; Christopher D. White; Michael E. Moseley; Allan L. Reiss

Fragile X syndrome, the most common form of hereditary mental retardation, causes disruption in the development of dendrites and synapses, the targets for axonal growth in the central nervous system. This disruption could potentially affect the development, wiring, and targeting of axons. The current study utilized diffusion tensor imaging (DTI) to investigate whether white matter tract integrity and connectivity are altered in fragile X syndrome. Ten females with a diagnosis of fragile X syndrome and ten, age matched, female control subjects underwent diffusion weighted MRI scans. A whole brain analysis of fractional anisotropy (FA) values was performed using statistical parametric mapping (SPM). A follow‐up, regions‐of‐interest analysis also was conducted. Relative to controls, females with fragile X exhibited lower FA values in white matter in fronto‐striatal pathways, as well as in parietal sensory‐motor tracts. This preliminary study suggests that regionally specific alterations of white matter integrity occur in females with fragile X. Aberrant white matter connectivity in these regions is consistent with the profile of cognitive and behavioral features of fragile X syndrome, and potentially provide additional insight into the detrimental effects of suboptimal levels of FMRP in the developing brain.


Biological Psychiatry | 2005

Cortical magnetic resonance imaging findings in familial pediatric bipolar disorder

Kiki D. Chang; Naama Barnea-Goraly; Asya Karchemskiy; Diana I. Simeonova; Patrick D. Barnes; Terence A. Ketter; Allan L. Reiss

BACKGROUND Morphometric magnetic resonance imaging (MRI) studies of pediatric bipolar disorder (BD) have not reported on gray matter volumes but have reported increased lateral ventricular size and presence of white matter hyperintensities (WMH). We studied gray matter volume, ventricular-to-brain ratios (VBR), and number of WMH in patients with familial, pediatric BD compared with control subjects. METHODS Twenty subjects with BD (aged 14.6 +/- 2.8 years; 4 female) according to the Washington University in St. Louis Kiddie Schedule for Affective Disorders and Schizophrenia, each with a parent with BD, and 20 age-, gender-, and intelligence quotient-matched healthy control subjects (aged 14.1 +/- 2.8 years; 4 female) were scanned at 3 T. Most subjects were taking psychotropic medications. A high-resolution T1-weighted spoiled gradient echo three-dimensional MRI sequence was analyzed by BrainImage for volumetric measurements, and T2-weighted images were read by a neuroradiologist to determine presence of WMH. RESULTS After covarying for age and total brain volume, there were no significant differences between subjects with BD and control subjects in volume of cerebral (p = .09) or prefrontal gray matter (p = .34). Subjects with BD did not have elevated numbers of WMH or greater VBR when compared with control subjects. CONCLUSIONS Children and adolescents with familial BD do not seem to have decreased cerebral grey matter or increased numbers of WMH, dissimilar to findings in adults with BD. Gray matter decreases and development of WMH might be later sequelae of BD or unique to adult-onset BD.


Diabetes Care | 2014

Alterations in White Matter Structure in Young Children With Type 1 Diabetes

Naama Barnea-Goraly; Mira Raman; Paul K. Mazaika; Matthew Marzelli; Tamara Hershey; Stuart A. Weinzimer; Tandy Aye; Bruce Buckingham; Nelly Mauras; Neil H. White; Larry A. Fox; Michael Tansey; Roy W. Beck; Katrina J. Ruedy; Craig Kollman; Peiyao Cheng; Allan L. Reiss

OBJECTIVE To investigate whether type 1 diabetes affects white matter (WM) structure in a large sample of young children. RESEARCH DESIGN AND METHODS Children (ages 4 to <10 years) with type 1 diabetes (n = 127) and age-matched nondiabetic control subjects (n = 67) had diffusion weighted magnetic resonance imaging scans in this multisite neuroimaging study. Participants with type 1 diabetes were assessed for HbA1c history and lifetime adverse events, and glucose levels were monitored using a continuous glucose monitor (CGM) device and standardized measures of cognition. RESULTS Between-group analysis showed that children with type 1 diabetes had significantly reduced axial diffusivity (AD) in widespread brain regions compared with control subjects. Within the type 1 diabetes group, earlier onset of diabetes was associated with increased radial diffusivity (RD) and longer duration was associated with reduced AD, reduced RD, and increased fractional anisotropy (FA). In addition, HbA1c values were significantly negatively associated with FA values and were positively associated with RD values in widespread brain regions. Significant associations of AD, RD, and FA were found for CGM measures of hyperglycemia and glucose variability but not for hypoglycemia. Finally, we observed a significant association between WM structure and cognitive ability in children with type 1 diabetes but not in control subjects. CONCLUSIONS These results suggest vulnerability of the developing brain in young children to effects of type 1 diabetes associated with chronic hyperglycemia and glucose variability.


Biological Psychiatry | 2002

Increased basal ganglia volumes in velo-cardio-facial syndrome (deletion 22q11.2)

Stephan Eliez; Naama Barnea-Goraly; J. Eric Schmitt; Yung Liu; Allan L. Reiss

BACKGROUND This study evaluated differences in caudate volumes in subjects with velo-cardio-facial syndrome due to a 22q11.2 (22qDS) deletion. Because psychosis is observed in 30% of adult subjects with 22qDS, this neurogenetic disorder could represent a putative model for a genetically mediated subtype of schizophrenia. METHODS Caudate volumes were measured on high-resolution magnetic resonance images in 30 children and adolescents with 22qDS and 30 gender- and age-matched normal comparison subjects. RESULTS Caudate head volumes were increased in the 22qDS group independent of neuroleptic medications. Subjects with 22qDS also displayed an abnormal pattern of asymmetry in the anterior caudate, with left side greater than right. CONCLUSIONS Alterations in the basal ganglia circuitry have been implicated in learning, cognitive, and behavioral problems in children and therefore could be involved in the expression of the neurobehavioral phenotype expressed by subjects with 22qDS. Abnormal caudate volume is a neurodevelopmental feature shared with schizophrenia, further establishing 22qDS as a potential neurodevelopmental model for this disorder.


Diabetes | 2014

Neuroanatomical Correlates of Dysglycemia in Young Children With Type 1 Diabetes

Matthew Marzelli; Paul K. Mazaika; Naama Barnea-Goraly; Tamara Hershey; Eva Tsalikian; William V. Tamborlane; Nelly Mauras; Neil H. White; Bruce Buckingham; Roy W. Beck; Katrina J. Ruedy; Craig Kollman; Peiyao Cheng; Allan L. Reiss

Studies of brain structure in type 1 diabetes (T1D) describe widespread neuroanatomical differences related to exposure to glycemic dysregulation in adults and adolescents. In this study, we investigate the neuroanatomical correlates of dysglycemia in very young children with early-onset T1D. Structural magnetic resonance images of the brain were acquired in 142 children with T1D and 68 age-matched control subjects (mean age 7.0 ± 1.7 years) on six identical scanners. Whole-brain volumetric analyses were conducted using voxel-based morphometry to detect regional differences between groups and to investigate correlations between regional brain volumes and measures of glycemic exposure (including data from continuous glucose monitoring). Relative to control subjects, the T1D group displayed decreased gray matter volume (GMV) in bilateral occipital and cerebellar regions (P < 0.001) and increased GMV in the left inferior prefrontal, insula, and temporal pole regions (P = 0.002). Within the T1D group, hyperglycemic exposure was associated with decreased GMV in medial frontal and temporal-occipital regions and increased GMV in lateral prefrontal regions. Cognitive correlations of intelligence quotient to GMV were found in cerebellar-occipital regions and medial prefrontal cortex for control subjects, as expected, but not for the T1D group. Thus, early-onset T1D affects regions of the brain that are associated with typical cognitive development.


The Journal of Neuroscience | 2006

Selective Alterations of White Matter Associated with Visuospatial and Sensorimotor Dysfunction in Turner Syndrome

Marie Holzapfel; Naama Barnea-Goraly; Mark A. Eckert; Shelli R. Kesler; Allan L. Reiss

Turner syndrome (TS) is a neurogenetic disorder characterized by impaired spatial, numerical, and motor functioning but relatively spared verbal ability. Results from previous neuroimaging studies suggest that gray matter alterations in parietal and frontal regions may contribute to atypical visuospatial and executive functioning in TS. Recent findings in TS also indicate variations in the shape of parietal gyri and white matter microstructural anomalies of the temporal lobe. Diffusion tensor imaging and structural imaging methods were used to determine whether 10 females with TS and 10 age- and gender-matched control subjects exhibited differences in fractional anisotropy, white matter density, and local brain shape. Relative to controls, females with TS had lower fractional anisotropy (FA) values in the deep white matter of the left parietal-occipital region extending anteriorly along the superior longitudinal fasciculus into the deep white matter of the frontal lobe. In addition, decreased FA values were located bilaterally in the internal capsule extending into the globus pallidus and in the right prefrontal region. Voxel-based morphometry (VBM) analysis showed corresponding white matter density differences in the internal capsules and left centrum semiovale. Tensor-based morphometry analysis indicated that the FA and VBM results were not attributable to differences in the local shape of brain structures. Compared with controls, females with TS had increases in FA values and white matter density in language-related areas of the inferior parietal and temporal lobes. These complementary analyses provide evidence for alterations in white matter pathways that subserve affected and preserved cognitive functions in TS.

Collaboration


Dive into the Naama Barnea-Goraly's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge