Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naama Menda is active.

Publication


Featured researches published by Naama Menda.


Plant Physiology | 2005

The SOL Genomics Network. A Comparative Resource for Solanaceae Biology and Beyond

Lukas A. Mueller; Teri H. Solow; Nicolas L. Taylor; Beth Skwarecki; Robert M. Buels; John Binns; Chenwei Lin; Mark H. Wright; Robert Ahrens; Ying Wang; Evan V. Herbst; Emil Keyder; Naama Menda; Dani Zamir; Steven D. Tanksley

The SOL Genomics Network (SGN; http://sgn.cornell.edu) is a rapidly evolving comparative resource for the plants of the Solanaceae family, which includes important crop and model plants such as potato (Solanum tuberosum), eggplant (Solanum melongena), pepper (Capsicum annuum), and tomato (Solanum lycopersicum). The aim of SGN is to relate these species to one another using a comparative genomics approach and to tie them to the other dicots through the fully sequenced genome of Arabidopsis (Arabidopsis thaliana). SGN currently houses map and marker data for Solanaceae species, a large expressed sequence tag collection with computationally derived unigene sets, an extensive database of phenotypic information for a mutagenized tomato population, and associated tools such as real-time quantitative trait loci. Recently, the International Solanaceae Project (SOL) was formed as an umbrella organization for Solanaceae research in over 30 countries to address important questions in plant biology. The first cornerstone of the SOL project is the sequencing of the entire euchromatic portion of the tomato genome. SGN is collaborating with other bioinformatics centers in building the bioinformatics infrastructure for the tomato sequencing project and implementing the bioinformatics strategy of the larger SOL project. The overarching goal of SGN is to make information available in an intuitive comparative format, thereby facilitating a systems approach to investigations into the basis of adaptation and phenotypic diversity in the Solanaceae family, other species in the Asterid clade such as coffee (Coffea arabica), Rubiaciae, and beyond.


Nature Genetics | 2007

Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato

Naomi Ori; Aya Refael Cohen; Adi Etzioni; Arnon Brand; Osnat Yanai; Sharona Shleizer; Naama Menda; Ziva Amsellem; Idan Efroni; Irena Pekker; John Paul Alvarez; Eyal Blum; Dani Zamir; Yuval Eshed

Plant leaves show pronounced plasticity of size and form. In the classical, partially dominant mutation Lanceolate (La), the large compound leaves of tomato (Solanum lycopersicum) are converted into small simple ones. We show that LA encodes a transcription factor from the TCP family containing an miR319-binding site. Five independent La isolates are gain-of-function alleles that result from point mutations within the miR319-binding site and confer partial resistance of the La transcripts to microRNA (miRNA)-directed inhibition. The reduced sensitivity to miRNA regulation leads to elevated LA expression in very young La leaf primordia and to precocious differentiation of leaf margins. In contrast, downregulation of several LA-like genes using ectopic expression of miR319 resulted in larger leaflets and continuous growth of leaf margins. Our results imply that regulation of LA by miR319 defines a flexible window of morphogenetic competence along the developing leaf margin that is required for leaf elaboration.


The Plant Cell | 2002

Rose Scent: Genomics Approach to Discovering Novel Floral Fragrance–Related Genes

Inna Guterman; Moshe Shalit; Naama Menda; Dan Piestun; Mery Dafny-Yelin; Gil Shalev; Einat Bar; Olga Davydov; Mariana Ovadis; Michal Emanuel; Jihong Wang; Zach Adam; Eran Pichersky; Efraim Lewinsohn; Dani Zamir; Alexander Vainstein; David Weiss

For centuries, rose has been the most important crop in the floriculture industry; its economic importance also lies in the use of its petals as a source of natural fragrances. Here, we used genomics approaches to identify novel scent-related genes, using rose flowers from tetraploid scented and nonscented cultivars. An annotated petal EST database of ∼2100 unique genes from both cultivars was created, and DNA chips were prepared and used for expression analyses of selected clones. Detailed chemical analysis of volatile composition in the two cultivars, together with the identification of secondary metabolism–related genes whose expression coincides with scent production, led to the discovery of several novel flower scent–related candidate genes. The function of some of these genes, including a germacrene D synthase, was biochemically determined using an Escherichia coli expression system. This work demonstrates the advantages of using the high-throughput approaches of genomics to detail traits of interest expressed in a cultivar-specific manner in nonmodel plants.


Nucleic Acids Research | 2011

The Sol Genomics Network (solgenomics.net): growing tomatoes using Perl

Aureliano Bombarely; Naama Menda; Isaak Y. Tecle; Robert M. Buels; Susan R. Strickler; Thomas Fischer-York; Anuradha Pujar; Jonathan Leto; Joseph Gosselin; Lukas A. Mueller

The Sol Genomics Network (SGN; http://solgenomics.net/) is a clade-oriented database (COD) containing biological data for species in the Solanaceae and their close relatives, with data types ranging from chromosomes and genes to phenotypes and accessions. SGN hosts several genome maps and sequences, including a pre-release of the tomato (Solanum lycopersicum cv Heinz 1706) reference genome. A new transcriptome component has been added to store RNA-seq and microarray data. SGN is also an open source software project, continuously developing and improving a complex system for storing, integrating and analyzing data. All code and development work is publicly visible on GitHub (http://github.com). The database architecture combines SGN-specific schemas and the community-developed Chado schema (http://gmod.org/wiki/Chado) for compatibility with other genome databases. The SGN curation model is community-driven, allowing researchers to add and edit information using simple web tools. Currently, over a hundred community annotators help curate the database. SGN can be accessed at http://solgenomics.net/.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Overdominant quantitative trait loci for yield and fitness in tomato.

Yaniv Semel; Jonathan Nissenbaum; Naama Menda; Michael Zinder; Uri Krieger; Noa Issman; Tzili Pleban; Zachary Lippman; Amit Gur; Dani Zamir

Heterosis, or hybrid vigor, is a major genetic force that contributes to world food production. The genetic basis of heterosis is not clear, and the importance of loci with overdominant (ODO) effects is debated. One problem has been the use of whole-genome segregating populations, where interactions often mask the effects of individual loci. To assess the contribution of ODO to heterosis in the absence of epistasis, we carried out quantitative genetic and phenotypic analyses on a population of tomato (Solanum lycopersicum) introgression lines (ILs), which carry single marker-defined chromosome segments from the distantly related wild species Solanum pennellii. The ILs revealed 841 quantitative trait loci (QTL) for 35 diverse traits measured in the field on homozygous and heterozygous plants. ILs showing greater reproductive fitness were characterized by the prevalence of ODO QTL, which were virtually absent for the nonreproductive traits. ODO can result from true ODO due to allelic interactions of a single gene or from pseudoODO that involves linked loci with dominant alleles in repulsion. The fact that we detected dominant and recessive QTL for all phenotypic categories but ODO only for the reproductive traits indicates that pseudoODO due to random linkage is unlikely to explain heterosis in the ILs. Thus, we favor the true ODO model involving a single functional Mendelian locus. We propose that the alliance of ODO QTL with higher reproductive fitness was selected for in evolution and was domesticated by man to improve yields of crop plants.


Plant Physiology | 2003

Volatile ester formation in roses. Identification of an acetyl-coenzyme A. Geraniol/Citronellol acetyltransferase in developing rose petals.

Moshe Shalit; Inna Guterman; Hanne Volpin; Einat Bar; Tal Tamari; Naama Menda; Zach Adam; Dani Zamir; Alexander Vainstein; David Weiss; Eran Pichersky; Efraim Lewinsohn

The aroma of roses (Rosa hybrida) is due to more than 400 volatile compounds including terpenes, esters, and phenolic derivatives. 2-Phenylethyl acetate, cis-3-hexenyl acetate, geranyl acetate, and citronellyl acetate were identified as the main volatile esters emitted by the flowers of the scented rose var. “Fragrant Cloud.” Cell-free extracts of petals acetylated several alcohols, utilizing acetyl-coenzyme A, to produce the corresponding acetate esters. Screening for genes similar to known plant alcohol acetyltransferases in a rose expressed sequence tag database yielded a cDNA (RhAAT1) encoding a protein with high similarity to several members of the BAHD family of acyltransferases. This cDNA was functionally expressed inEscherichia coli, and its gene product displayed acetyl-coenzyme A:geraniol acetyltransferase enzymatic activity in vitro. The RhAAT1 protein accepted other alcohols such as citronellol and 1-octanol as substrates, but 2-phenylethyl alcohol andcis-3-hexen-1-ol were poor substrates, suggesting that additional acetyltransferases are present in rose petals. The RhAAT1 protein is a polypeptide of 458 amino acids, with a calculated molecular mass of 51.8 kD, pI of 5.45, and is active as a monomer. TheRhAAT1 gene was expressed exclusively in floral tissue with maximum transcript levels occurring at stage 4 of flower development, where scent emission is at its peak.


Plant Physiology | 2002

O-Methyltransferases Involved in the Biosynthesis of Volatile Phenolic Derivatives in Rose Petals

Noa Lavid; Jihong Wang; Moshe Shalit; Inna Guterman; Einat Bar; Till Beuerle; Naama Menda; Sharoni Shafir; Dani Zamir; Zach Adam; Alexander Vainstein; David Weiss; Eran Pichersky; Efraim Lewinsohn

Rose (Rosa hybrida) flowers produce and emit a diverse array of volatiles, characteristic to their unique scent. One of the most prominent compounds in the floral volatiles of many rose varieties is the methoxylated phenolic derivative 3,5-dimethoxytoluene (orcinol dimethyl ether). Cell-free extracts derived from developing rose petals displayedO-methyltransferase (OMT) activities toward several phenolic substrates, including 3,5-dihydroxytoluene (orcinol), 3-methoxy,5-hydroxytoluene (orcinol monomethyl ether), 1-methoxy, 2-hydroxy benezene (guaiacol), and eugenol. The activity was most prominent in rose cv Golden Gate, a variety that produces relatively high levels of orcinol dimethyl ether, as compared with rose cv Fragrant Cloud, an otherwise scented variety but which emits almost no orcinol dimethyl ether. Using a functional genomics approach, we have identified and characterized two closely related cDNAs from a rose petal library that each encode a protein capable of methylating the penultimate and immediate precursors (orcinol and orcinol monomethyl ether, respectively) to give the final orcinol dimethyl ether product. The enzymes, designated orcinol OMTs (OOMT1 and OOMT2), are closely related to other plant methyltransferases whose substrates range from isoflavones to phenylpropenes. The peak in the levels ofOOMT1 and OOMT2 transcripts in the flowers coincides with peak OMT activity and with the emission of orcinol dimethyl ether.


Nucleic Acids Research | 2015

The Sol Genomics Network (SGN)—from genotype to phenotype to breeding

Noe Fernandez-Pozo; Naama Menda; Jeremy D. Edwards; Surya Saha; Isaak Y. Tecle; Susan R. Strickler; Aureliano Bombarely; Thomas Fisher-York; Anuradha Pujar; Hartmut Foerster; Aimin Yan; Lukas A. Mueller

The Sol Genomics Network (SGN, http://solgenomics.net) is a web portal with genomic and phenotypic data, and analysis tools for the Solanaceae family and close relatives. SGN hosts whole genome data for an increasing number of Solanaceae family members including tomato, potato, pepper, eggplant, tobacco and Nicotiana benthamiana. The database also stores loci and phenotype data, which researchers can upload and edit with user-friendly web interfaces. Tools such as BLAST, GBrowse and JBrowse for browsing genomes, expression and map data viewers, a locus community annotation system and a QTL analysis tools are available. A new tool was recently implemented to improve Virus-Induced Gene Silencing (VIGS) constructs called the SGN VIGS tool. With the growing genomic and phenotypic data in the database, SGN is now advancing to develop new web-based breeding tools and implement the code and database structure for other species or clade-specific databases.


Plant and Cell Physiology | 2013

The Plant Ontology as a Tool for Comparative Plant Anatomy and Genomic Analyses

Laurel Cooper; Ramona L. Walls; Justin Elser; Maria A. Gandolfo; Dennis W. Stevenson; Barry Smith; Justin Preece; Balaji Athreya; Christopher J. Mungall; Stefan A. Rensing; Manuel Hiss; Daniel Lang; Ralf Reski; Tanya Z. Berardini; Donghui Li; Eva Huala; Mary L. Schaeffer; Naama Menda; Elizabeth Arnaud; Rosemary Shrestha; Yukiko Yamazaki; Pankaj Jaiswal

The Plant Ontology (PO; http://www.plantontology.org/) is a publicly available, collaborative effort to develop and maintain a controlled, structured vocabulary (‘ontology’) of terms to describe plant anatomy, morphology and the stages of plant development. The goals of the PO are to link (annotate) gene expression and phenotype data to plant structures and stages of plant development, using the data model adopted by the Gene Ontology. From its original design covering only rice, maize and Arabidopsis, the scope of the PO has been expanded to include all green plants. The PO was the first multispecies anatomy ontology developed for the annotation of genes and phenotypes. Also, to our knowledge, it was one of the first biological ontologies that provides translations (via synonyms) in non-English languages such as Japanese and Spanish. As of Release #18 (July 2012), there are about 2.2 million annotations linking PO terms to >110,000 unique data objects representing genes or gene models, proteins, RNAs, germplasm and quantitative trait loci (QTLs) from 22 plant species. In this paper, we focus on the plant anatomical entity branch of the PO, describing the organizing principles, resources available to users and examples of how the PO is integrated into other plant genomics databases and web portals. We also provide two examples of comparative analyses, demonstrating how the ontology structure and PO-annotated data can be used to discover the patterns of expression of the LEAFY (LFY) and terpene synthase (TPS) gene homologs.


Planta | 2005

Flower proteome: changes in protein spectrum during the advanced stages of rose petal development

Mery Dafny-Yelin; Inna Guterman; Naama Menda; Mariana Ovadis; Moshe Shalit; Eran Pichersky; Dani Zamir; Efraim Lewinsohn; Zach Adam; David Weiss; Alexander Vainstein

Flowering is a unique and highly programmed process, but hardly anything is known about the developmentally regulated proteome changes in petals. Here, we employed proteomic technologies to study petal development in rose (Rosa hybrida). Using two-dimensional polyacrylamide gel electrophoresis, we generated stage-specific (closed bud, mature flower and flower at anthesis) petal protein maps with ca. 1,000 unique protein spots. Expression analyses of all resolved protein spots revealed that almost 30% of them were stage-specific, with ca. 90 protein spots for each stage. Most of the proteins exhibited differential expression during petal development, whereas only ca. 6% were constitutively expressed. Eighty-two of the resolved proteins were identified by mass spectrometry and annotated. Classification of the annotated proteins into functional groups revealed energy, cell rescue, unknown function (including novel sequences) and metabolism to be the largest classes, together comprising ca. 90% of all identified proteins. Interestingly, a large number of stress-related proteins were identified in developing petals. Analyses of the expression patterns of annotated proteins and their corresponding RNAs confirmed the importance of proteome characterization.

Collaboration


Dive into the Naama Menda's collaboration.

Top Co-Authors

Avatar

Lukas A. Mueller

Boyce Thompson Institute for Plant Research

View shared research outputs
Top Co-Authors

Avatar

Dani Zamir

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan R. Strickler

Boyce Thompson Institute for Plant Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Vainstein

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

David Weiss

Hebrew University of Jerusalem

View shared research outputs
Researchain Logo
Decentralizing Knowledge