Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nadeem Khan is active.

Publication


Featured researches published by Nadeem Khan.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2005

Impact of Mouse Strain Differences in Innate Hindlimb Collateral Vasculature

Armin Helisch; Shawn Wagner; Nadeem Khan; Mary Drinane; Swen Wolfram; Matthias Heil; Tibor Ziegelhoeffer; Ulrike Brandt; Justin D. Pearlman; Harold M. Swartz; Wolfgang Schaper

Objective—To assess the importance of genetic background for collateral artery development. Methods and Results—C57BL/6, BALB/c and 129S2/Sv mice were studied after femoral artery ligation by laser Doppler imaging, visible light oximetry, time-of-flight–magnetic resonance imaging, and treadmill testing; C57BL/6 and BALB/c also underwent electron paramagnetic resonance (EPR) oximetry, x-ray angiography, and histology. C57BL/6 had the least initial distal ischemia and most complete recovery. BALB/c had the most severe initial ischemia and poorest recovery. BALB/c had some vasodilatory reserve in their ligated limbs not seen in the other strains at 3 weeks. By in vivo TOF-magnetic resonance angiography, C57BL/6 had larger preexistent and developed collaterals. By x-ray angiography, C57BL/6 had a higher collateral-dependent filling score and number of visible collaterals immediately after femoral ligation and a higher number of visible collaterals at 1 week but not at 4 weeks. EPR oximetry and histology revealed hypoxia and tissue damage in regions of collateral growth of BALB/c but not C57BL/6 mice. In C57BL/6 BrdUrd uptake in the thigh was limited to larger vessels and isolated perivascular cells. Proliferative activity in collateral arterioles was similar in both strains. Conclusions—Genetic differences in preexistent collateral vasculature can profoundly affect outcome and milieu for compensatory collateral artery growth after femoral artery occlusion.


Free Radical Biology and Medicine | 2003

Spin traps: in vitro toxicity and stability of radical adducts.

Nadeem Khan; Carmen M. Wilmot; Gerald M. Rosen; Eugene Demidenko; Jie Sun; Joy Joseph; Julia A. O’Hara; B. Kalyanaraman; Harold M. Swartz

We have evaluated the effects of DMPO, CMPO, EMPO, BMPO, and DEPMPO on functioning CHO cells and the stability of the radical adducts in the presence of cells. The potential toxic effects of the spin traps were measured by two estimates of cell viability (trypan blue exclusion and colony formation) and one of cell function (rate of oxygen consumption). We also studied the effects of the spin traps on colony formation in a second cell line, 9L tumor cells. Toxicity varied with the type of cell line and the parameter that was measured. In aqueous solutions the order of stability for all spin adducts was SO(3) > OH > CH(3), while in cell suspensions it was SO(3) > OH approximately CH(3). The radical adducts of the new spin traps have significantly increased stability as compared to DMPO. These results indicate that the new spin traps potentially offer increased stability of spin adducts in functioning cells. It also is clear that it is necessary to carry out appropriate studies of the stability and toxicity in the system that is to be studied for any particular use of these spin traps. It then should be feasible to select the spin trap(s) best suited for the proposed study.


Biophysical Journal | 2003

Oxygen Consumption Rates and Oxygen Concentration in Molt-4 Cells and Their mtDNA Depleted (ρ0) Mutants

Jiangang Shen; Nadeem Khan; Lionel D. Lewis; Ray Armand; Oleg Y. Grinberg; Eugene Demidenko; Harold M. Swartz

Respiratory deficient cell lines are being increasingly used to elucidate the role of mitochondria and to understand the pathophysiology of mitochondrial genetic disease. We have investigated the oxygen consumption rates and oxygen concentration in wild-type (WT) and mitochondrial DNA (mtDNA) depleted (rho(0)) Molt-4 cells. Wild-type Molt-4 cells have moderate oxygen consumption rates, which were significantly reduced in the rho(0) cells. PCMB (p-chloromercurobenzoate) inhibited the oxygen consumption rates in both WT and rho(0) cells, whereas potassium cyanide decreased the oxygen consumption rates only in WT Molt-4 cells. Menadione sodium bisulfite (MSB) increased the oxygen consumption rates in both cell lines, whereas CCCP (carbonyl cyanide m-chlorophenylhydrazone) stimulated the oxygen consumption rates only in WT Molt-4 cells. Superoxide radical adducts were observed in both WT and rho(0) cells when stimulated with MSB. The formation of this adduct was inhibited by PCMB but not by potassium cyanide. These results suggest that the reactive oxygen species (ROS) induced by MSB were at least in part produced via a mitochondrial independent pathway. An oxygen gradient between the extra- and intracellular compartments was observed in WT Molt-4 cells, which further increased when cells were stimulated by CCCP and MSB. The results are consistent with our earlier findings suggesting that such oxygen gradients may be a general phenomenon found in most or all cell systems under appropriate conditions.


BMC Cancer | 2013

Sensitization of human cancer cells to gemcitabine by the Chk1 inhibitor MK-8776: cell cycle perturbation and impact of administration schedule in vitro and in vivo.

Ryan Montano; Ruth Thompson; Injae Chung; Huagang Hou; Nadeem Khan; Alan Eastman

BackgroundChk1 inhibitors have emerged as promising anticancer therapeutic agents particularly when combined with antimetabolites such as gemcitabine, cytarabine or hydroxyurea. Here, we address the importance of appropriate drug scheduling when gemcitabine is combined with the Chk1 inhibitor MK-8776, and the mechanisms involved in the schedule dependence.MethodsGrowth inhibition induced by gemcitabine plus MK-8776 was assessed across multiple cancer cell lines. Experiments used clinically relevant “bolus” administration of both drugs rather than continuous drug exposures. We assessed the effect of different treatment schedules on cell cycle perturbation and tumor cell growth in vitro and in xenograft tumor models.ResultsMK-8776 induced an average 7-fold sensitization to gemcitabine in 16 cancer cell lines. The time of MK-8776 administration significantly affected the response of tumor cells to gemcitabine. Although gemcitabine induced rapid cell cycle arrest, the stalled replication forks were not initially dependent on Chk1 for stability. By 18 h, RAD51 was loaded onto DNA indicative of homologous recombination. Inhibition of Chk1 at 18 h rapidly dissociated RAD51 leading to the collapse of replication forks and cell death. Addition of MK-8776 from 18–24 h after a 6-h incubation with gemcitabine induced much greater sensitization than if the two drugs were incubated concurrently for 6 h. The ability of this short incubation with MK-8776 to sensitize cells is critical because of the short half-life of MK-8776 in patients’ plasma. Cell cycle perturbation was also assessed in human pancreas tumor xenografts in mice. There was a dramatic accumulation of cells in S/G2 phase 18 h after gemcitabine administration, but cells had started to recover by 42 h. Administration of MK-8776 18 h after gemcitabine caused significantly delayed tumor growth compared to either drug alone, or when the two drugs were administered with only a 30 min interval.ConclusionsThere are two reasons why delayed addition of MK-8776 enhances sensitivity to gemcitabine: first, there is an increased number of cells arrested in S phase; and second, the arrested cells have adequate time to initiate recombination and thereby become Chk1 dependent. These results have important implications for the design of clinical trials using this drug combination.


Physiological Measurement | 2005

Simultaneous measurement of rat brain cortex PtO2 using EPR oximetry and a fluorescence fiber-optic sensor during normoxia and hyperoxia

Julia A. O'Hara; Huagang Hou; Eugene Demidenko; Roger Springett; Nadeem Khan; Harold M. Swartz

Electron paramagnetic resonance (EPR) oximetry is a promising, relatively non-invasive method of monitoring tissue partial pressure of oxygen (PtO(2)) that has proven useful in following changes in PtO(2) under various physiologic and pathophysiologic conditions. Optimal utilization of the method will be facilitated by systematic comparisons with other available methods. Here, we report on the absolute values and changes of rat brain PtO(2) using EPR oximetry and the OxyLite, an oxygen monitor based on fluorescence quenching, at adjacent locations in the same brain. EPR oximetry utilizes an implanted oxygen-sensitive material and reports tissue PtO(2) at the surface of the material. OxyLite measures PtO(2) using the fluorescence lifetime of a chromophore fixed to the tip of an optical fiber that is inserted into tissue. Measurements were made at a depth of 2-3 mm into the cortex during normoxia and during breathing of carbogen (95% O(2):5% CO(2)) followed by a return to normoxia. We conclude that in this study (1) PtO(2) values reported by the two methods are similar but not exactly the same, (2) both methods can record a baseline and rapid changes in PtO(2), (3) changes in PtO(2) induced by increasing FiO(2) from 0.26 to 0.95 (carbogen) were similar by the two methods and (4) in some rats breathing carbogen, absolute values of PtO(2) were above the sensitive range of the OxyLite method.


Academic Radiology | 2014

Clinical EPR: Unique Opportunities and Some Challenges

Harold M. Swartz; Benjamin B. Williams; Bassem I. Zaki; Alan C. Hartford; Lesley A. Jarvis; Eunice Y. Chen; Richard J. Comi; Marc S. Ernstoff; Huagang Hou; Nadeem Khan; Steven G. Swarts; Ann Barry Flood; Periannan Kuppusamy

Electron paramagnetic resonance (EPR) spectroscopy has been well established as a viable technique for measurement of free radicals and oxygen in biological systems, from in vitro cellular systems to in vivo small animal models of disease. However, the use of EPR in human subjects in the clinical setting, although attractive for a variety of important applications such as oxygen measurement, is challenged with several factors including the need for instrumentation customized for human subjects, probe, and regulatory constraints. This article describes the rationale and development of the first clinical EPR systems for two important clinical applications, namely, measurement of tissue oxygen (oximetry) and radiation dose (dosimetry) in humans. The clinical spectrometers operate at 1.2 GHz frequency and use surface-loop resonators capable of providing topical measurements up to 1 cm depth in tissues. Tissue pO2 measurements can be carried out noninvasively and repeatedly after placement of an oxygen-sensitive paramagnetic material (currently India ink) at the site of interest. Our EPR dosimetry system is capable of measuring radiation-induced free radicals in the tooth of irradiated human subjects to determine the exposure dose. These developments offer potential opportunities for clinical dosimetry and oximetry, which include guiding therapy for individual patients with tumors or vascular disease by monitoring of tissue oxygenation. Further work is in progress to translate this unique technology to routine clinical practice.


Advances in Experimental Medicine and Biology | 2010

Clinical electron paramagnetic resonance (EPR) oximetry using India ink.

Benjamin B. Williams; Nadeem Khan; Bassem I. Zaki; Alan C. Hartford; Marc S. Ernstoff; Harold M. Swartz

Electron paramagnetic resonance (EPR) oximetry can be used to provide direct absolute measurements of pO(2) in living tissue using India ink as an O(2) reporter. In vivo measurements are made using low frequency (1.2 GHz) EPR spectroscopy and surface loop resonators, which enable measurements to be made at superficial sites through a non-invasive (after placing the ink in the tissues) and repeatable measurement procedure. Ongoing EPR oximetry studies in human subjects include measurement of subcutaneous pO(2) in the feet of healthy volunteers to develop procedures that could be used in the treatment of peripheral vascular disease and oximetry in tumors during courses of radiation and chemotherapy, to follow pO(2) so oxygen-dependent therapies can be optimized. In each case, we aim to provide quantitative measurements of tissue pO(2) which will aid physicians in the characterization of disease status and the effects of therapeutic measures, so that treatments can be applied with optimal effectiveness by taking into account the oxygen-dependent aspects of the therapy. The overall goal is to enhance clinical outcomes. Oximetry measurements of subcutaneous tissue on dorsal and plantar foot surfaces have been made in 9 volunteers, with measurements ongoing for each and the longest set of measurements carried out successfully over the last 5 years. Tumor oximetry measurements have been performed in tumor tissues of 10 patients during courses of radiation and chemotherapy. Tumor types include melanoma, basal cell, soft tissue sarcoma, and lymphoma, and measurement sites have ranged from the feet to the scalp. These studies demonstrate the feasibility of EPR oximetry in a clinical setting and the potential for more widespread use in the treatment of these and other oxygen-dependent diseases.


Radiotherapy and Oncology | 2009

Repeated tumor pO2 measurements by multi-site EPR oximetry as a prognostic marker for enhanced therapeutic efficacy of fractionated radiotherapy

Huagang Hou; Jean P. Lariviere; Eugene Demidenko; David J. Gladstone; Harold M. Swartz; Nadeem Khan

PURPOSE To investigate the temporal effects of single or fractionated radiotherapy on subcutaneous RIF-1 tumor pO(2) and to determine the therapeutic outcomes when the timing of fractionations is guided by tumor pO(2). METHODS The time-course of the tumor pO(2) changes was followed by multi-site electron paramagnetic resonance (EPR) oximetry. The tumors were treated with single 10, 20, and 10 Gy x 2 doses, and the tumor pO(2) was measured repeatedly for six consecutive days. In the 10 Gy x 2 group, the second dose of 10 Gy was delivered at a time when the tumors were either relatively oxygenated or hypoxic. The changes in tumor volumes were followed for nine days to determine the therapeutic outcomes. RESULTS A significant increase in tumor pO(2) was observed at 24h post 10 Gy, while 20 Gy resulted in a significant increase in tumor pO(2) at 72-120 h post irradiation. The tumors irradiated with a second dose of 10 Gy at 24h, when the tumors were oxygenated, had a significant increase in tumor doubling times (DTs), as compared to tumors treated at 48 h when they were hypoxic (p<0.01). CONCLUSION Results indicate that the time of tumor oxygenation depends on the irradiation doses, and radiotherapeutic efficacy could be optimized if irradiations are scheduled at times of increased tumor oxygenation. In vivo multi-site EPR oximetry could be potentially used to monitor tumor pO(2) repeatedly during fractionated schemes to optimize radiotherapeutic outcome. This technique could also be used to identify responsive and non-responsive tumors, which will facilitate the design of other therapeutic approaches for non-responsive tumors at early time points during the course of therapy.


International Journal of Radiation Oncology Biology Physics | 2009

Tissue pO2 of Orthotopic 9L and C6 Gliomas and Tumor-Specific Response to Radiotherapy and Hyperoxygenation

Nadeem Khan; Hongbin Li; Huagang Hou; Jean P. Lariviere; David J. Gladstone; Eugene Demidenko; Harold M. Swartz

PURPOSE Tumor hypoxia is a well-known therapeutic problem; however, a lack of methods for repeated measurements of glioma partial pressure of oxygen (pO(2)) limits the ability to optimize the therapeutic approaches. We report the effects of 9.3 Gy of radiation and carbogen inhalation on orthotopic 9L and C6 gliomas and on the contralateral brain pO(2) in rats using a new and potentially widely useful method, multisite in vivo electron paramagnetic resonance oximetry. METHODS AND MATERIALS Intracerebral 9L and C6 tumors were established in the left hemisphere of syngeneic rats, and electron paramagnetic resonance oximetry was successfully used for repeated tissue pO(2) measurements after 9.3 Gy of radiation and during carbogen breathing for 5 consecutive days. RESULTS Intracerebral 9L gliomas had a pO(2) of 30-32 mm Hg and C6 gliomas were relatively hypoxic, with a pO(2) of 12-14 mm Hg (p < 0.05). The tissue pO(2) of the contralateral brain was 40-45 mm Hg in rats with either 9L or C6 gliomas. Irradiation resulted in a significant increase in pO(2) of the 9L gliomas only. A significant increase in the pO(2) of the 9L and C6 gliomas was observed in rats breathing carbogen, but this effect decreased during 5 days of repeated experiments in the 9L gliomas. CONCLUSION These results highlight the tumor-specific effect of radiation (9.3.Gy) on tissue pO(2) and the different responses to carbogen inhalation. The ability of electron paramagnetic resonance oximetry to provide direct repeated measurements of tissue pO(2) could have a vital role in understanding the dynamics of hypoxia during therapy that could then be optimized by scheduling doses at times of improved tumor oxygenation.


Molecular and Cellular Biochemistry | 2002

Measurements in vivo of parameters pertinent to ROS/RNS using EPR spectroscopy

Nadeem Khan; Harold M. Swartz

The technique of in vivo EPR spectroscopy can provide useful and even unique information pertinent to the study of oxygen/nitrogen radicals and related processes. The parameters that can be measured include: (a) Oxygen centered radicals (by spin trapping); (b) carbon centered radicals (by spin trapping and sometimes by direct observation); (c) sulfur centered radicals (by spin trapping and sometimes by direct observation); (d) nitric oxide (by spin trapping); (e) oxygen (using oxygen sensitive paramagnetic materials); (f) redox state (using metabolism of nitroxides); (g) thiol groups (using special nitroxides); (h) pH (using special nitroxides); (h) perfusion (using washout of paramagnetic tracers); (i) some redox active metal ions (chromium, manganese). The current state of the art for these and other measurements is discussed, especially in relationship to experiments that are likely to be useful for studies of reactive oxygen species (ROS) and/or reactive nitrogen species (RNS).

Collaboration


Dive into the Nadeem Khan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge