Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nadeen O. Chahine is active.

Publication


Featured researches published by Nadeen O. Chahine.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Characterization of the structure-function relationship at the ligament-to-bone interface.

Kristen L. Moffat; Wan-Hsuan S. Sun; Paul E. Pena; Nadeen O. Chahine; Stephen B. Doty; Gerard A. Ateshian; Clark T. Hung; Helen H. Lu

Soft tissues such as ligaments and tendons integrate with bone through a fibrocartilaginous interface divided into noncalcified and calcified regions. This junction between distinct tissue types is frequently injured and not reestablished after surgical repair. Its regeneration is also limited by a lack of understanding of the structure–function relationship inherent at this complex interface. Therefore, focusing on the insertion site between the anterior cruciate ligament (ACL) and bone, the objectives of this study are: (i) to determine interface compressive mechanical properties, (ii) to characterize interface mineral presence and distribution, and (iii) to evaluate insertion site-dependent changes in mechanical properties and matrix mineral content. Interface mechanical properties were determined by coupling microcompression with optimized digital image correlation analysis, whereas mineral presence and distribution were characterized by energy dispersive x-ray analysis and backscattered scanning electron microscopy. Both region- and insertion-dependent changes in mechanical properties were found, with the calcified interface region exhibiting significantly greater compressive mechanical properties than the noncalcified region. Mineral presence was only detectable within the calcified interface and bone regions, and its distribution corresponds to region-dependent mechanical inhomogeneity. Additionally, the compressive mechanical properties of the tibial insertion were greater than those of the femoral. The interface structure–function relationship elucidated in this study provides critical insight for interface regeneration and the formation of complex tissue systems.


Journal of Biomechanics | 2003

Optical determination of anisotropic material properties of bovine articular cartilage in compression.

Christopher C.-B. Wang; Nadeen O. Chahine; Clark T. Hung; Gerard A. Ateshian

The precise nature of the material symmetry of articular cartilage in compression remains to be elucidated. The primary objective of this study was to determine the equilibrium compressive Youngs moduli and Poissons ratios of bovine cartilage along multiple directions (parallel and perpendicular to the split line direction, and normal to the articular surface) by loading small cubic specimens (0.9 x 0.9 x 0.8 mm, n =15) in unconfined compression, with the expectation that the material symmetry of cartilage could be determined more accurately with the help of a more complete set of material properties. The second objective was to investigate how the tension-compression nonlinearity of cartilage might alter the interpretation of material symmetry. Optimized digital image correlation was used to accurately determine the resultant strain fields within the specimens under loading. Experimental results demonstrated that neither the Youngs moduli nor the Poissons ratios exhibit the same values when measured along the three loading directions. The main findings of this study are that the framework of linear orthotropic elasticity (as well as higher symmetries of linear elasticity) is not suitable to describe the equilibrium response of articular cartilage nor characterize its material symmetry; a framework which accounts for the distinctly different responses of cartilage in tension and compression is more suitable for describing the equilibrium response of cartilage; within this framework, cartilage exhibits no lower than orthotropic symmetry.


Journal of Biomechanical Engineering-transactions of The Asme | 2009

Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena.

Gerard A. Ateshian; Vikram Rajan; Nadeen O. Chahine; Clare E. Canal; Clark T. Hung

Cartilage is a hydrated soft tissue whose solid matrix consists of negatively charged proteoglycans enmeshed within a fibrillar collagen network. Though many aspects of cartilage mechanics are well understood today, most notably in the context of porous media mechanics, there remain a number of responses observed experimentally whose prediction from theory has been challenging. In this study the solid matrix of cartilage is modeled with a continuous fiber angular distribution, where fibers can only sustain tension, swelled by the osmotic pressure of a proteoglycan ground matrix. It is shown that this representation of cartilage can predict a number of observed phenomena in relation to the tissues equilibrium response to mechanical and osmotic loading, when flow-dependent and flow-independent viscoelastic effects have subsided. In particular, this model can predict the transition of Poissons ratio from very low values in compression (approximately 0.02) to very high values in tension (approximately 2.0). Most of these phenomena cannot be explained when using only three orthogonal fiber bundles to describe the tissue matrix, a common modeling assumption used to date. The main picture emerging from this analysis is that the anisotropy of the fibrillar matrix of articular cartilage is intimately dependent on the mechanism of tensed fiber recruitment, in the manner suggested by our recent theoretical study (Ateshian, 2007, ASME J. Biomech. Eng., 129(2), pp. 240-249).


Journal of Biomechanics | 2004

The correspondence between equilibrium biphasic and triphasic material properties in mixture models of articular cartilage.

Gerard A. Ateshian; Nadeen O. Chahine; Ines M. Basalo; Clark T. Hung

Mixture models have been successfully used to describe the response of articular cartilage to various loading conditions. Mow et al. (J. Biomech. Eng. 102 (1980) 73) formulated a biphasic mixture model of articular cartilage where the collagen-proteoglycan matrix is modeled as an intrinsically incompressible porous-permeable solid matrix, and the interstitial fluid is modeled as an incompressible fluid. Lai et al. (J. Biomech. Eng. 113 (1991) 245) proposed a triphasic model of articular cartilage as an extension of their biphasic theory, where negatively charged proteoglycans are modeled to be fixed to the solid matrix, and monovalent ions in the interstitial fluid are modeled as additional fluid phases. Since both models co-exist in the cartilage literature, it is useful to show how the measured properties of articular cartilage (the confined and unconfined compressive and tensile moduli, the compressive and tensile Poissons ratios, and the shear modulus) relate to both theories. In this study, closed-form expressions are presented that relate biphasic and triphasic material properties in tension, compression and shear. These expressions are then compared to experimental findings in the literature to provide greater insight into the measured properties of articular cartilage as a function of bathing solutions salt concentrations and proteoglycan fixed-charge density.


Journal of Biomechanics | 2008

Dynamic loading of deformable porous media can induce active solute transport

Michael B. Albro; Nadeen O. Chahine; Roland Li; Keith Yeager; Clark T. Hung; Gerard A. Ateshian

Active solute transport mediated by molecular motors across porous membranes is a well-recognized mechanism for transport across the cell membrane. In contrast, active transport mediated by mechanical loading of porous media is a non-intuitive mechanism that has only been predicted recently from theory, but not yet observed experimentally. This study uses agarose hydrogel and dextran molecules as a model experimental system to explore this mechanism. Results show that dynamic loading can enhance the uptake of dextran by a factor greater than 15 over passive diffusion, for certain combinations of gel concentration and dextran molecular weight. Upon cessation of loading, the concentration reverts back to that achieved under passive diffusion. Thus, active solute transport in porous media can indeed be mediated by cyclical mechanical loading.


Biophysical Journal | 2009

Effect of Dynamic Loading on the Transport of Solutes into Agarose Hydrogels

Nadeen O. Chahine; Michael B. Albro; Eric G. Lima; Victoria I. Wei; Christopher R. Dubois; Clark T. Hung; Gerard A. Ateshian

In functional tissue engineering, the application of dynamic loading has been shown to improve the mechanical properties of chondrocyte-seeded agarose hydrogels relative to unloaded free swelling controls. The goal of this study is to determine the effect of dynamic loading on the transport of nutrients in tissue-engineered constructs. To eliminate confounding effects, such as nutrient consumption in cell-laden disks, this study examines the response of solute transport due to loading using a model system of acellular agarose disks and dextran in phosphate-buffered saline (3 and 70 kDa). An examination of the passive diffusion response of dextran in agarose confirms the applicability of Ficks law of diffusion in describing the behavior of dextran. Under static loading, the application of compressive strain decreased the total interstitial volume available for the 70 kDa dextran, compared to free swelling. Dynamic loading significantly enhanced the rate of solute uptake into agarose disks, relative to static loading. Moreover, the steady-state concentration under dynamic loading was found to be significantly greater than under static loading, for larger-molecular-mass dextran (70 kDa). This experimental finding confirms recent theoretical predictions that mechanical pumping of a porous tissue may actively transport solutes into the disk against their concentration gradient. The results of this study support the hypothesis that the application of dynamic loading in the presence of growth factors of large molecular weight may result in both a mechanically and chemically stimulating environment for tissue growth.


Spine | 2013

Toll-Like Receptor 4 (TLR4) expression and stimulation in a model of intervertebral disc inflammation and degeneration.

Neena Rajan; Ona Bloom; Robert Maidhof; Nathanial Stetson; Barbara Sherry; Mitchell Levine; Nadeen O. Chahine

Study Design. We measured the expression and responses of Toll-Like Receptor 4 (TLR4) activation in the intervertebral disc (IVD) in vitro and in vivo. We hypothesize that stimulation of the IVD with the TLR4 ligand lipopolysaccharide (LPS) results in upregulation of a coordinated set of proinflammatory mediators and inhibition of matrix expression, both consistent with a molecular profile of degeneration. Objective. To characterize early inflammatory and morphological changes induced by TLR4 activation in the IVD. Summary of Background Data. TLR4 is a pattern recognition receptor activated in innate immunity that has been implicated in disease mechanisms of inflammatory cartilaginous degeneration. However, no study to date has examined the expression and responses of TLR4 in the IVD. Methods. IVD cells were stimulated with LPS in a dose-dependent manner, and inflammatory cytokine levels were measured by quantitative reverse transcription-polymerase chain reaction. Histological and inflammatory changes due to in vivo injection of LPS into the rat caudal IVD were measured by enzyme-linked immunosorbent assay and immunoblotting. Results. Baseline TLR4 expression in IVD tissue varied according to cell type. LPS stimulation resulted in significant increases in tumor necrosis factor &agr; (TNF)-&agr;, interleukin (IL)-1&bgr;, IL-6, and nitric oxide levels and significant inhibition in aggrecan and collagen-2. Intradiscal injection of LPS was found to cause moderate degenerative changes in the IVD, with increases in tissue levels of IL-1&bgr;, TNF-&agr;, high mobility group box 1 protein (HMGB1), and macrophage migration inhibitory factor (MIF). Conclusion. This study provides the first evidence that IVD cells express TLR4 and are responsive to TLR4 activation by upregulating a coordinated set of inflammatory cytokines. This study suggests that intradiscal injection of LPS offers a model for triggering inflammation of the IVD, demonstrating that inflammatory insults alone may potentially trigger degenerative changes of the IVD.


Nature Reviews Rheumatology | 2009

New methods to diagnose and treat cartilage degeneration

Robert J. Daher; Nadeen O. Chahine; Andrew S. Greenberg; Nicholas A. Sgaglione; Daniel A. Grande

Lesions in articular cartilage can result in significant musculoskeletal morbidity and display unique biomechanical characteristics that make repair difficult, at best. Several surgical procedures have been devised in an attempt to relieve pain, restore function, and delay or stop the progression of cartilaginous lesions. Advanced MRI and ultrasonography protocols are currently used in the evaluation of tissue repair and to improve diagnostic capability. Other nonoperative modalities, such as injection of intra-articular hyaluronic acid or supplementary oral glucosamine and chondroitin sulfate, have shown potential efficacy as anti-inflammatory and symptom-modifying agents. The emerging field of tissue engineering, involving the use of a biocompatible, structurally and mechanically stable scaffold, has shown promising early results in cartilage tissue repair. Scaffolds incorporating specific cell sources and bioactive molecules have been the focus in this new exciting field. Further work is required to better understand the behavior of chondrocytes and the variables that influence their ability to heal articular lesions. The future of cartilage repair will probably involve a combination of treatments in an attempt to achieve a regenerative tissue that is both biomechanically stable and, ideally, identical to the surrounding native tissues.


Langmuir | 2011

Extreme hardening of PDMS thin films due to high compressive strain and confined thickness.

Wenwei Xu; Nadeen O. Chahine; Todd Sulchek

Polymers confined to small dimensions and that undergo high strains can show remarkable nonlinear mechanics, which must be understood to accurately predict the functioning of nanoscale polymer devices. In this paper we describe the determination of the mechanical properties of ultrathin polydimethylsiloxane (PDMS) films undergoing large strains, using atomic force microscope (AFM) indentation with a spherical tip. The PDMS was molded into extremely thin films of variable thickness and adhered to a hard substrate. We found that for films below 1 μm in thickness the Youngs modulus increased with decreasing sample thickness with a power law exponent of 1.35. Furthermore, as the soft PDMS film was indented, significant strain hardening was observed as the indentation depth approached 45% of the sample thickness. To properly quantify the nonlinear mechanical measurements, we utilized a pointwise Hertzian model which assumes only piecewise linearity on the part of the probed material. This analysis revealed three regions within the material. A linear region with a constant Youngs modulus was seen for compression up to 45% strain. At strains higher than 45%, a marked increase in Youngs modulus was measured. The onset of strain induced stiffening is well modeled by finite element modeling and occurs as stress contours expanding from the probe and the substrate overlap. A third region of mechanical variation occurred at small indentations of less than 10 nm. The pointwise Youngs modulus at small indentations was several orders of magnitude higher than that in the linear elasticity region; we studied and ruled out causes responsible for this phenomenon. In total, these effects can cause thin elastomer films to become extremely stiff such that the measured Youngs modulus is over a 100-fold higher than the bulk PDMS. Therefore, the mechanics of a polymer can be changed by adjusting the geometry of a material, in addition to changing the material itself. In addition to understanding the mechanics of thin polymer films, this work provides an excellent test of experimental techniques to measure the mechanics of other nonlinear and heterogeneous materials such as biological cells.


Arthritis Research & Therapy | 2016

Serum levels of the proinflammatory cytokine interleukin-6 vary based on diagnoses in individuals with lumbar intervertebral disc diseases

Kathryn Weber; D. Olivier Alipui; Cristina Sison; Ona Bloom; Shaheda Quraishi; M. Chris Overby; Mitchell Levine; Nadeen O. Chahine

BackgroundMany intervertebral disc diseases cause low back pain (LBP). Proinflammatory cytokines and matrix metalloproteinases (MMPs) participate in disc pathology. In this study, we examined levels of serum cytokines and MMPs in human subjects with diagnoses of disc herniation (DH), spinal stenosis (SS), or degenerative disc disease (DDD) relative to levels in control subjects. Comparison between subjects with DH and those with other diagnoses (Other Dx, grouped from SS and DDD) was performed to elaborate a pathological mechanism based on circulating cytokine levels.MethodsStudy participants were recruited from a spine neurosurgery practice (n = 80), a back pain management practice (n = 27), or a control cohort (n = 26). Serum samples were collected before treatment and were assayed by multiplex assays for levels of interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, interferon-γ, tumor necrosis factor-α, MMP-1, MMP-3, and MMP-9. Inflammatory and degradative mediator levels were compared for subjects with LBP and control subjects, by diagnosis and by treatment groups, controlling for effects of sex, age, and reported history of osteoarthritis. Spearman’s correlation coefficient was used to examine relationships with age, body mass index (BMI), symptom duration, and smoking history.ResultsSerum levels of IL-6 were significantly higher in subjects with LBP compared with control subjects. Participants with LBP due to Other Dx had significantly higher levels of IL-6 than DH and controls. Serum levels of MMP-1 were significantly lower in LBP subjects, specifically those with DH, than in control subjects. Positive correlations were found between IL-6 levels and BMI, symptom duration, and age. MMP-1 levels were positively correlated with age.ConclusionsThe findings of the present clinical study are the results of the first examination of circulating cytokine levels in DDD and SS and provide evidence for a more extensive role of IL-6 in disc diseases, where patients with DDD or SS have higher serum cytokine levels than those with DH or control subjects. These findings suggest that LBP subjects have low-grade systemic inflammation, and biochemical profiling of circulating cytokines may assist in refining personalized diagnoses of disc diseases.

Collaboration


Dive into the Nadeen O. Chahine's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel A. Grande

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Maidhof

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Neena Rajan

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Ona Bloom

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Kathryn Weber

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge