Nadège Follain
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nadège Follain.
Carbohydrate Polymers | 2013
Gilberto Siqueira; Julien Bras; Nadège Follain; Sabrina Belbekhouche; Stéphane Marais; Alain Dufresne
Cellulose nanocrystals have been prepared by acid hydrolysis of Luffa cylindrica fibers. The acid-resistant residue consisted of rod-like nanoparticles with an average length an diameter around 242 and 5.2nm, respectively (aspect ratio around 46). These cellulose nanocrystals have been used as a reinforcing phase for the processing of bio-nanocomposites using polycaprolactone (PCL) as matrix. To promote interfacial filler/matrix interactions the surface of cellulose nanocrystals was chemically modified with n-octadecyl isocyanate (C(18)H(37)NCO). Evidence of the grafting was supported by infrared spectroscopy and elemental analysis. X-ray diffraction analysis was used to confirm the integrity of cellulose nanocrystals after chemical modification. Both unmodified and chemically modified nanocrystals were used to prepare nanocomposites. The thermal properties of these materials were determined from differential scanning calorimetry and their mechanical behavior was evaluated in both the linear and non-linear range.
RSC Advances | 2012
Lyuba I. Mikhalovska; V.M. Gun'ko; Anna A. Rugal; Olena I. Oranska; Yuriy I. Gornikov; Claudine Morvan; Nadège Follain; Catherine Domas; Eugene M. Pakhlov; Sergey V. Mikhalovsky
Structural (crystallinity), textural (pore volume, Vp, specific surface area, SBET, pore size distribution, PSD) and adsorption characteristics of bleached flax fibres and cotton fibres have been determined using equilibrium adsorption of nitrogen, water, chlorhexidine diacetate (CHX) and methylene blue (MB), adsorption–desorption kinetics of MB and CHX, X-ray diffraction, infrared spectroscopy, thermogravimetry, differential scanning calorimetry (DSC) and DSC cryoporometry. Air-dry, degassed, wetted (RH ≈ 95%), swollen (24 h in water) and air-dried and heated (120 °C for 1 h) fibres were studied. Flax fibres have higher crystallinity, adsorption capacity (MB, CHX, water), and smaller MB desorption than cotton fibres. Cotton fibres have larger Vp value (nitrogen adsorption) and the SBET,N2 similar to that of flax. Water vapour adsorption is higher on flax since the adsorbed water volume is Vp,w = 0.19 and 0.14 cm3 g−1 for flax and cotton, respectively, at RH ≈ 95%. Wetted fibres are characterised by Vp,w larger by an order of magnitude than Vp,N2 for degassed samples because of swelling effect. However, nanopores at radius R < 1 nm are practically absent in all samples studied regardless of the characterisation technique. The adsorption of MB and CHX on flax fibres is much larger than that for cotton fibres. The specific surface area determined from MB adsorption is 51 m2 g−1 (close to SBET,w estimated from water adsorption but larger than SBET,N2) and 8 m2 g−1 (much smaller than SBET,N2 and SBET,w) for flax and cotton fibres, respectively.
International Journal of Biological Macromolecules | 2017
Asma Chetouani; Nadège Follain; Stéphane Marais; Christophe Rihouey; Meriem Elkolli; Mahmoud Bounekhel; Djafer Benachour; Didier Le Cerf
Pectin has been widely used in a variety of biomedical applications. In this study, it was modified with sodium periodate as an oxidant and characterized by physicochemical methods Periodate oxidation increased the contents of dialdehyde units and carboxyl groups in pectin, and a decrease in pectin viscosity was measured. The oxidization reaction led to a significant decrease in all values of molecular weight and size (Mn, Mw, [η] and Rh) as determined by size exclusion chromatography (SEC), which allowed the selection of the oxidized pectin to be added to chitosan. Chitosan-based films were characterized by infra-red spectroscopy (FTIR), X-ray diffractometry (XRD), and differential scanning calorimetry (DSC) measurements. Thermal behaviour studies demonstrated that interactions existed between chitosan and oxidized pectin. The haemolysis percentages of films were found to be less than 5%, which indicated their good blood compatibility. Finally, the antibacterial activity was clearly improved. Cross-linking reactions between pectin and chitosan through ionic bonds and amide bonds and between chitosan and oxidized pectin through Schiff base formation were evidenced, which opens the way to extend applications of these polysaccharides; notably, the biocompatibility and biodegradability of these new networks is convenient for pharmaceutical, biomedical or cosmetic applications.
RSC Advances | 2014
Nadine Tenn; Nadège Follain; Kateryna Fatyeyeva; Fabienne Poncin-Epaillard; Christine Labrugère; Stéphane Marais
Different hydrophobic plasma treatments (CF4, CF4/H2, CF4/C2H2, tetramethyl silane (TMS)) were applied to the poly(lactic acid) (PLA) film in order to improve its water and oxygen barrier properties. The plasma parameters, such as power, gas flow and treatment time, were optimized according to the water contact angle measurements. X-ray photoelectron spectroscopy measurements revealed the presence of either fluorine (CF, CF2, CF3) or silicon (SiOxCy) functional groups on the film surface after the fluorinated or TMS plasma treatments, respectively. The thermal properties of the treated PLA films were studied by means of the differential scanning calorimetry (DSC) measurements and were found not to be influenced by the plasma treatment. The water permeability measurements showed an improvement of the PLA barrier properties as a result of all plasma treatments used and, particularly, after CF4/C2H2 plasma. The water vapour sorption measurements confirmed well the improvement of the water barrier properties by the reduction of the water solubility. No impact of the plasma treatment on the oxygen barrier properties of the PLA film was observed, even at high relative humidity (up to 90%).
ACS Applied Materials & Interfaces | 2017
Tiphaine Messin; Nadège Follain; Alain Guinault; Cyrille Sollogoub; Valérie Gaucher; Nicolas Delpouve; Stéphane Marais
Multilayer coextrusion processing was applied to produce 2049-layer film of poly(butylene succinate-co-butylene adipate) (PBSA) confined against poly(lactic acid) (PLA) using forced assembly, where the PBSA layer thickness was about 60 nm. This unique technology allowed to process semicrystalline PBSA as confined polymer and amorphous PLA as confining polymer in a continuous manner. The continuity of PBSA layers within the 80/20 wt % PLA/PBSA layered films was clearly evidenced by atomic force microscopy (AFM). Similar thermal events to the reference films were revealed by thermal studies; indicating no diffusion of polymers during the melt-processing. Mechanical properties were measured for the multilayer film and the obtained results were those expected considering the fraction of each polymer, revealing the absence of delamination in the PLA/PBSA multinanolayer film. The confinement effect induced by PLA led to a slight orientation of the crystals, an increase of the rigid amorphous fraction (RAF) in PBSA with a densification of this fraction without changing film crystallinity. These structural changes allowed to strongly improve the water vapor and gas barrier properties of the PBSA layer into the multilayer film up to two decades in the case of CO2 gas. By confining the PBSA structure in very thin and continuous layers, it was then possible to improve the barrier performances of a biodegradable system and the resulting barrier properties were successfully correlated to the effect of confinement on the microstructure and the chain segment mobility of the amorphous phase. Such investigation on these multinanolayers of PLA/PBSA with the aim of evidencing relationships between microstructure implying RAF and barrier performances has never been performed yet. Besides, gas and water permeation results have shown that the barrier improvement obtained from the multilayer was mainly due to the reduction of solubility linked to the reduction of the free volume while the tortuosity effect, as usually expected, was not really observed. This work brings new insights in the field of physicochemical behaviors of new multilayer films made of biodegradable polyesters but also in interfacial processes due to the confinement effect induced in these multinanolayer structures obtained by the forced assembly coextrusion. This original coextrusion process was a very advantageous technique to produce eco-friendly materials with functional properties without the help of tie layer, additives, solvents, surface treatments, or inorganic fillers.
Cellulose | 2015
Nadège Follain; Redouan Saiah; Kateryna Fatyeyeva; Nirina Randrianandrasana; Nathalie Leblanc; Stéphane Marais; Laurence Lecamp
The aim of the present paper is to report the reduction of the water uptake of sunflower pith, sustainable raw by-product without current added-value in oilseed crops production. The water-sensitivity is ascribed to its structure, because mainly constituted of carbohydrates, due to the formation of additional hydrogen bondings with water molecules. Two environmentally-friendly approaches were applied to provide a modified layer presenting water resistance in surface of sunflower pith in order to keep its low-density property. The first approach based on vegetable oil corresponds to thermal and photochemical treatments. A thin layer of virgin or acrylated epoxidized soybean oil was sprayed on the pith surface, and thereafter was thermally cured or photocured, respectively. The second approach consisted in a solventless chemical modification of the pith surface by a cold plasma treatment. Both approaches were successfully performed: water resistance of sunflower pith was clearly enhanced, especially with oil-based treatments; while maintaining its integrity. Developing new and promising ecological water-resistant products of low density from sunflower pith is thought of increasing interest with potential practical applications.
Transport Properties of Polymeric Membranes | 2018
Nadège Follain; Stéphane Marais
This chapter introduces gas transport properties exhibited by polymer nanocomposite films. It starts by presenting a little review of elaboration methods of nanocomposite films. It is thereafter mentioned the filler morphology within a thermoplastic matrix obtained depending on the filler dispersion level, on the filler origin, on the filler surface-chemical modification, and on filler/matrix compatibility. The influence of the filler morphology on gas transport properties of the resulting hybrid films and the role played by filler/matrix interfacial regions is then examined. By the end of the chapter, the nanocomposite structure/gas transport performances relationships are explained through permeation kinetics, the choice of gas diffusing species (differing in Van der Waals molar volumes), and the corresponding parameters such as gas permeability, diffusivity, and solubility. The permeation parameter rankings for the nanocomposite films as a function of gas molecules are featured to be compatible with Van Krevelens statements.
Advanced Materials Research | 2013
Raphaël Crétois; Nadège Follain; J. Soulestin; Eric Dargent; Laurent Lebrun; Stéphane Marais
Nanocomposites based on bacterial semi-crystalline polyhydroxyalkanoates, poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) or poly (3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)), and organo-modified montmorillonite nanoclay are prepared by melt processing. All nanocomposites are characterized by X-Ray Diffraction (XRD) and Transmission Electronic Microscopy (TEM) and exhibit a mainly intercalated structure. Concerning water transport properties, a decrease of barrier properties for PHBV/nanoclay films is measured due to the affinity of nanoclay to water; whereas for P(3HB-co-4HB)/nanoclay nanocomposites, a decrease of the water permeability is observed relative to the tortuosity effect. Eventually, as a function of nanoclay content, a competition is evidenced between the tortuosity effect and the water sorption induced by nanoclay.
Carbohydrate Polymers | 2005
Nadège Follain; Catherine Joly; Patrice Dole; Christophe Bliard
Composites Part A-applied Science and Manufacturing | 2009
A. Bessadok; S. Roudesli; Stéphane Marais; Nadège Follain; Laurent Lebrun