Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nadège Gouignard is active.

Publication


Featured researches published by Nadège Gouignard.


PLOS ONE | 2009

A New Family of Receptor Tyrosine Kinases with a Venus Flytrap Binding Domain in Insects and Other Invertebrates Activated by Aminoacids

Arnaud Ahier; Philippe Rondard; Nadège Gouignard; Naji Khayath; Siluo Huang; Jacques Trolet; Daniel J. Donoghue; Monique Gauthier; Jean-Philippe Pin; Colette Dissous

Background Tyrosine kinase receptors (RTKs) comprise a large family of membrane receptors that regulate various cellular processes in cell biology of diverse organisms. We previously described an atypical RTK in the platyhelminth parasite Schistosoma mansoni, composed of an extracellular Venus flytrap module (VFT) linked through a single transmembrane domain to an intracellular tyrosine kinase domain similar to that of the insulin receptor. Methods and Findings Here we show that this receptor is a member of a new family of RTKs found in invertebrates, and particularly in insects. Sixteen new members of this family, named Venus Kinase Receptor (VKR), were identified in many insects. Structural and phylogenetic studies performed on VFT and TK domains showed that VKR sequences formed monophyletic groups, the VFT group being close to that of GABAB receptors and the TK one being close to that of insulin receptors. We show that a recombinant VKR is able to autophosphorylate on tyrosine residues, and report that it can be activated by L-arginine. This is in agreement with the high degree of conservation of the alpha amino acid binding residues found in many amino acid binding VFTs. The presence of high levels of vkr transcripts in larval forms and in female gonads indicates a putative function of VKR in reproduction and/or development. Conclusion The identification of RTKs specific for parasites and insect vectors raises new perspectives for the control of human parasitic and infectious diseases.


PLOS Neglected Tropical Diseases | 2013

Dual targeting of insulin and venus kinase Receptors of Schistosoma mansoni for novel anti-schistosome therapy.

Mathieu Vanderstraete; Nadège Gouignard; Katia Cailliau; Marion Morel; Julien Lancelot; Jean-François Bodart; Colette Dissous

Background Chemotherapy of schistosomiasis relies on a single drug, Praziquantel (PZQ) and mass-use of this compound has led to emergence of resistant strains of Schistosoma mansoni, therefore pointing out the necessity to find alternative drugs. Through their essential functions in development and metabolism, receptor tyrosine kinases (RTK) could represent valuable drug targets for novel anti-schistosome chemotherapies. Taking advantage of the similarity between the catalytic domains of S. mansoni insulin receptors (SmIR1 and SmIR2) and Venus Kinase Receptors (SmVKR1 and SmVKR2), we studied the possibility to fight schistosomes by targeting simultaneously the four receptors with a single drug. Methodology/Principal Findings Several commercial RTK inhibitors were tested for their potential to inhibit the kinase activities of SmIR1, SmIR2, SmVKR1 and SmVKR2 intracellular domains (ICD) expressed in Xenopus oocytes. We measured the inhibitory effect of chemicals on meiosis resumption induced by the active ICD of the schistosome kinases in oocytes. The IR inhibitor, tyrphostin AG1024, was the most potent inhibitory compound towards SmIR and SmVKR kinases. In vitro studies then allowed us to show that AG1024 affected the viability of both schistosomula and adult worms of S. mansoni. At micromolar doses, AG1024 induced apoptosis and caused schistosomula death in a dose-dependent manner. In adult worms, AG1024 provoked alterations of reproductive organs, as observed by confocal laser scanner microscopy. With 5 µM AG1024, parasites were no more feeding and laying eggs, and they died within 48 h with 10 µM. Conclusion/Significance IRs and VKRs are essential in S. mansoni for key biological processes including glucose uptake, metabolism and reproduction. Our results demonstrate that inhibiting the kinase potential and function of these receptors by a single chemical compound AG1024 at low concentrations, leads to death of schistosomula and adult worms. Thus, AG1024 represents a valuable hit compound for further design of anti-kinase drugs applicable to anti-schistosome chemotherapy.


Current Pharmaceutical Design | 2012

Protein Kinases as Potential Targets for Novel Anti-Schistosomal Strategies

Svenja Beckmann; Silke Leutner; Nadège Gouignard; Colette Dissous; Christoph G. Grevelding

Schistosome parasites are the causative pathogens of schistosomiasis (bilharzia), a disease of worldwide significance. In terms of patient numbers, schistosomiasis ranks second to malaria as a parasitosis affecting more than 200 million people of the tropics and subtropics. Since the 1970s Praziquantel (PZQ) is the drug of choice and nearly exclusively used for treatment. However, drug resistance is an increasing threat, particularly with respect to large-scale PZQ administration programs. Last decades research indicated that resistance against PZQ can be induced under laboratory conditions, and field studies provided first indications for the possibility of reduced PZQ efficacy. Furthermore, clear evidence for the molecular armamentarium of schistosomes with multidrug transporters was found, one of which was responding to PZQ challenge. Also the development of a vaccine still represents an elusive goal, although effort and time have been invested in this subject. In light of these facts it is commonly accepted that new drugs are urgently needed. Research on signal transduction processes in Schistosoma mansoni has provided an unexpected and novel perspective towards this end. Molecular, biochemical, and physiological studies elucidating principles of schistosome development have demonstrated the essential role of protein kinases (PKs). In humans, PKs are known to be involved in cancer development. Since a variety of approved anticancer drugs targeting PKs exist, first studies have been performed to investigate whether these drugs are able to also inhibit schistosome PKs. Indeed, promising results have been obtained indicating the potential of PKs as privileged targets for new concepts in fighting schistosomes.


PLOS Pathogens | 2014

Venus kinase receptors control reproduction in the platyhelminth parasite Schistosoma mansoni.

Mathieu Vanderstraete; Nadège Gouignard; Katia Cailliau; Marion Morel; Steffen Hahnel; Silke Leutner; Svenja Beckmann; Christoph G. Grevelding; Colette Dissous

The Venus Kinase Receptor (VKR) is a single transmembrane molecule composed of an intracellular tyrosine kinase domain close to that of insulin receptor and an extracellular Venus Flytrap (VFT) structure similar to the ligand binding domain of many class C G Protein Coupled Receptors. This receptor tyrosine kinase (RTK) was first discovered in the platyhelminth parasite Schistosoma mansoni, then in a large variety of invertebrates. A single vkr gene is found in most genomes, except in S. mansoni in which two genes Smvkr1 and Smvkr2 exist. VKRs form a unique family of RTKs present only in invertebrates and their biological functions are still to be discovered. In this work, we show that SmVKRs are expressed in the reproductive organs of S. mansoni, particularly in the ovaries of female worms. By transcriptional analyses evidence was obtained that both SmVKRs fulfill different roles during oocyte maturation. Suppression of Smvkr expression by RNA interference induced spectacular morphological changes in female worms with a strong disorganization of the ovary, which was dominated by the presence of primary oocytes, and a defect of egg formation. Following expression in Xenopus oocytes, SmVKR1 and SmVKR2 receptors were shown to be activated by distinct ligands which are L-Arginine and calcium ions, respectively. Signalling analysis in Xenopus oocytes revealed the capacity of SmVKRs to activate the PI3K/Akt/p70S6K and Erk MAPK pathways involved in cellular growth and proliferation. Additionally, SmVKR1 induced phosphorylation of JNK (c-Jun N-terminal kinase). Activation of JNK by SmVKR1 was supported by the results of yeast two-hybrid experiments identifying several components of the JNK pathway as specific interacting partners of SmVKR1. In conclusion, these results demonstrate the functions of SmVKR in gametogenesis, and particularly in oogenesis and egg formation. By eliciting signalling pathways potentially involved in oocyte proliferation, growth and migration, these receptors control parasite reproduction and can therefore be considered as potential targets for anti-schistosome therapies.


Experimental Parasitology | 2012

Schistosoma mansoni: Structural and biochemical characterization of two distinct Venus Kinase Receptors

Nadège Gouignard; Mathieu Vanderstraete; Katia Cailliau; Arlette Lescuyer; Edith Browaeys; Colette Dissous

Venus Kinase Receptors (VKRs) are atypical transmembrane proteins composed of an extracellular Venus FlyTrap module linked through a single helix to a tyrosine kinase domain similar to that of insulin receptors. This structure was first described in Schistosoma mansoni, then in a selected range of invertebrates, including many insects. The preferential expression of VKRs in larvae and gonads suggested their role in development and reproduction. While a single vkr gene was consistently found in all genomes, we identified two distinct vkr genes in S. mansoni. Our data indicated that Smvkr1 and Smvkr2 are very similar in structure and likely originated from gene duplication. Both genes are expressed in all the parasite stages and encode homologous proteins with a conserved VKR structure. Recombinant SmVKR1 and SmVKR2 exhibit tyrosine kinase activities dependent on the binding of distinct small ligand molecules. SmVKR1 and SmVKR2 could represent paralogs with different functions in the parasite.


BMC Genomics | 2013

The venus kinase receptor (VKR) family: structure and evolution

Mathieu Vanderstraete; Nadège Gouignard; Arnaud Ahier; Marion Morel; Jérôme Vicogne; Colette Dissous

BackgroundReceptor tyrosine kinases (RTK) form a family of transmembrane proteins widely conserved in Metazoa, with key functions in cell-to-cell communication and control of multiple cellular processes. A new family of RTK named Venus Kinase Receptor (VKR) has been described in invertebrates. The VKR receptor possesses a Venus Fly Trap (VFT) extracellular module, a bilobate structure that binds small ligands to induce receptor kinase activity. VKR was shown to be highly expressed in the larval stages and gonads of several invertebrates, suggesting that it could have functions in development and/or reproduction.ResultsAnalysis of recent genomic data has allowed us to extend the presence of VKR to five bilaterian phyla (Platyhelminthes, Arthropoda, Annelida, Mollusca, Echinodermata) as well as to the Cnidaria phylum. The presence of NveVKR in the early-branching metazoan Nematostella vectensis suggested that VKR arose before the bilaterian radiation. Phylogenetic and gene structure analyses showed that the 40 receptors identified in 36 animal species grouped monophyletically, and likely evolved from a common ancestor. Multiple alignments of tyrosine kinase (TK) and VFT domains indicated their important level of conservation in all VKRs identified up to date. We showed that VKRs had inducible activity upon binding of extracellular amino-acids and molecular modeling of the VFT domain confirmed the structure of the conserved amino-acid binding site.ConclusionsThis study highlights the presence of VKR in a large number of invertebrates, including primitive metazoans like cnidarians, but also its absence from nematodes and chordates. This little-known RTK family deserves to be further explored in order to determine its evolutionary origin, its possible interest for the emergence and specialization of Metazoa, and to understand its function in invertebrate development and/or reproductive biology.


PLOS ONE | 2012

SmSak, the second Polo-like kinase of the helminth parasite Schistosoma mansoni: conserved and unexpected roles in meiosis.

Thavy Long; Mathieu Vanderstraete; Katia Cailliau; Marion Morel; Arlette Lescuyer; Nadège Gouignard; Christoph G. Grevelding; Edith Browaeys; Colette Dissous

Polo-like kinases (Plks) are a family of conserved regulators of a variety of events throughout the cell cycle, expanded from one Plk in yeast to five Plks in mammals (Plk1-5). Plk1 is the best characterized member of the Plk family, homolog to the founding member Polo of Drosophila, and plays a major role in cell cycle progression by triggering G2/M transition. Plk4/Sak (for Snk (Serum-inducible kinase) akin kinase) is a unique member of the family, structurally distinct from other Plk members, with essential functions in centriole duplication. The genome of the trematode parasite Schistosoma mansoni contains only two Plk genes encoding SmPlk1 and SmSak. SmPlk1 has been shown already to be required for gametogenesis and parasite reproduction. In this work, in situ hybridization indicated that the structurally conserved Plk4 protein, SmSak, was largely expressed in schistosome female ovary and vitellarium. Expression of SmSak in Xenopus oocytes confirmed its Plk4 conserved function in centriole amplification. Moreover, analysis of the function of SmSak in meiosis progression of G2-blocked Xenopus oocytes indicated that, in contrast to SmPlk1, SmSak cannot induce G2/M transition in the absence of endogenous Plk1 (Plx1). Unexpectedly, meiosis progression was spontaneously observed in Plx1-depleted oocytes co-expressing SmSak and SmPlk1. Molecular interaction between SmSak and SmPlk1 was confirmed by co-immunoprecipitation of both proteins. These data indicate that Plk1 and Plk4 proteins have the potential to interact and cross-activate in cells, thus attributing for the first time a potential role of Plk4 proteins in meiosis/mitosis entry. This unexpected role of SmSak in meiosis could be relevant to further consider the function of this novel Plk in schistosome reproduction.


PLOS ONE | 2018

Gene expression of the two developmentally regulated dermatan sulfate epimerases in the Xenopus embryo

Nadège Gouignard; Tanja Schön; Christian Holmgren; Ina Strate; Emirhan Taşöz; Franziska Wetzel; Marco Maccarana; Edgar M. Pera

Chondroitin sulfate (CS)/dermatan sulfate (DS) proteoglycans are abundant on the cell surface and in the extracellular matrix and have important functions in matrix structure, cell-matrix interaction and signaling. The DS epimerases 1 and 2, encoded by Dse and Dsel, respectively, convert CS to a CS/DS hybrid chain, which is structurally and conformationally richer than CS, favouring interaction with matrix proteins and growth factors. We recently showed that Xenopus Dse is essential for the migration of neural crest cells by allowing cell surface CS/DS proteoglycans to adhere to fibronectin. Here we investigate the expression of Dse and Dsel in Xenopus embryos. We show that both genes are maternally expressed and exhibit partially overlapping activity in the eyes, brain, trigeminal ganglia, neural crest, adenohypophysis, sclerotome, and dorsal endoderm. Dse is specifically expressed in the epidermis, anterior surface ectoderm, spinal nerves, notochord and dermatome, whereas Dsel mRNA alone is transcribed in the spinal cord, epibranchial ganglia, prechordal mesendoderm and myotome. The expression of the two genes coincides with sites of cell differentiation in the epidermis and neural tissue. Several expression domains can be linked to previously reported phenotypes of knockout mice and clinical manifestations, such as the Musculocontractural Ehlers-Danlos syndrome and psychiatric disorders.


PLOS Pathogens | 2016

Correction: Venus Kinase Receptors Control Reproduction in the Platyhelminth Parasite Schistosoma mansoni.

Mathieu Vanderstraete; Nadège Gouignard; Katia Cailliau; Marion Morel; Steffen Hahnel; Silke Leutner; Svenja Beckmann; Christoph G. Grevelding; Colette Dissous

[This corrects the article DOI: 10.1371/journal.ppat.1004138.].


Journal of Rare Diseases Research & Treatment | 2016

Aberrant neural crest development causes craniofacial and other malformations in an animal model of Musculocontractural Ehlers-Danlos syndrome.

Edgar M. Pera; Nadège Gouignard; Marco Maccarana

Musculocontractural Ehlers-Danlos syndrome (MC-EDS) is a rare recessive disorder that is characterized by connective tissue fragility, distinct craniofacial features and congenital malformations. MC-EDS patients have defects in the enzymes dermatan sulfate epimerase-1 and dermatan 4-O-sulfotransferase-1, which are involved in the biosynthesis of iduronic acid in the chondroitin sulfate/dermatan sulfate (CS/DS) chains of proteoglycans (PGs). While the connective tissue defect is a result of disturbed collagen fibril assembly based on a decreased iduronic acid content of interacting CS/DS-PGs, the cause of the developmental malformations in MC-EDS is not well understood. This review focuses on a new role of CS/DS-PGs in the development of multipotent and highly migratory neural crest (NC) cells in the Xenopus embryo model of MC-EDS. Single iduronic acid residues in CS/DS-PGs are involved in the formation of NC-derived craniofacial structures by facilitating the migration and adhesion of NC cells to fibronectin. Our results suggest a defect in NC development as cause of the craniofacial and other congenital anomalies in MC-EDS patients, which might contribute to an improved diagnosis and etiology-based therapy. (Less)

Collaboration


Dive into the Nadège Gouignard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arnaud Ahier

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge