Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nader Shehata is active.

Publication


Featured researches published by Nader Shehata.


Journal of Nanoparticle Research | 2012

Control of oxygen vacancies and Ce+3 concentrations in doped ceria nanoparticles via the selection of lanthanide element

Nader Shehata; Kathleen Meehan; Mantu K. Hudait; Neeta Jain

The effect of lanthanides that have positive association energies with oxygen vacancies, such as samarium and neodymium, and the elements with negative association energies, such as holmium and erbium, on ionization state of cerium and, consequentially, the oxygen vacancy concentration in doped ceria nanoparticles are investigated in this article. Structural and optical characterizations of the doped and undoped ceria nanoparticles, synthesized using chemical precipitation, are carried out using transmission electron microscopy, X-ray diffractometry, optical absorption spectroscopy, and fluorescence spectroscopy. It is deduced that the negative association energy dopants decrease the conversion of Ce+4 into Ce+3 and, hence, scavenge the oxygen vacancies, evidenced by the observed increase in the allowed direct bandgap, decrease in the integrated fluorescence intensity, and increased the size of doped nanoparticles. The opposite trends are obtained when the positive association dopants are used. It is concluded that the determining factor as to whether a lanthanide dopant in ceria acts as a generator or scavenger of oxygen vacancies in ceria nanoparticles is the sign of the association energy between the element and the oxygen vacancies. The ability to tailor the ionization state of cerium and the oxygen vacancy concentration in ceria has applications in a broad range of fields, which include catalysis, biomedicine, electronics, and environmental sensing.


Nanoscale Research Letters | 2014

Reduced erbium-doped ceria nanoparticles: one nano-host applicable for simultaneous optical down- and up-conversions

Nader Shehata; Kathleen Meehan; Ibrahim Hassounah; Mantu K. Hudait; Nikhil Jain; Michael Clavel; Sarah El-Helw; N.K. Madi

This paper introduces a new synthesis procedure to form erbium-doped ceria nanoparticles (EDC NPs) that can act as an optical medium for both up-conversion and down-conversion in the same time. This synthesis process results qualitatively in a high concentration of Ce3+ ions required to obtain high fluorescence efficiency in the down-conversion process. Simultaneously, the synthesized nanoparticles contain the molecular energy levels of erbium that are required for up-conversion. Therefore, the synthesized EDC NPs can emit visible light when excited with either UV or IR photons. This opens new opportunities for applications where emission of light via both up- and down-conversions from a single nanomaterial is desired such as solar cells and bio-imaging.


Journal of Nanomaterials | 2014

Study of optical and structural characteristics of ceria nanoparticles doped with negative and positive association lanthanide elements

Nader Shehata; Kathleen Meehan; Mantu K. Hudait; Neeta Jain; S. Gaballah

This paper studies the effect of adding lanthanides with negative association energy, such as holmium and erbium, to ceria nanoparticles doped with positive association energy lanthanides, such as neodymium and samarium. That is what we called mixed doped ceria nanoparticles (MDC NPs). In MDC NPs of grain size range around 6 nm, it is proved qualitatively that the conversion rate from Ce4+ to Ce3+ is reduced, compared to ceria doped only with positive association energy lanthanides. There are many pieces of evidence which confirm the obtained conclusion. These indications are an increase in the allowed direct band gap which is calculated from the absorbance dispersion measurements, a decrease in the emitted fluorescence intensity, and an increase in the size of nanoparticles, which is measured using both techniques: transmission electron microscope (TEM) and X-ray diffractometer (XRD). That gives a novel conclusion that there are some trivalent dopants, such as holmium and erbium, which can suppress Ce3+ ionization states in ceria and consequently act as scavengers for active O-vacancies in MDC. This promising concept can develop applications which depend on the defects in ceria such as biomedicine, electronic devices, and gas sensors.


Materials | 2015

Enhanced Erbium-Doped Ceria Nanostructure Coating to Improve Solar Cell Performance

Nader Shehata; Michael Clavel; Kathleen Meehan; Effat Samir; Soha Gaballah; Mohammed Salah

This paper discusses the effect of adding reduced erbium-doped ceria nanoparticles (REDC NPs) as a coating on silicon solar cells. Reduced ceria nanoparticles doped with erbium have the advantages of both improving conductivity and optical conversion of solar cells. Oxygen vacancies in ceria nanoparticles reduce Ce4+ to Ce3+ which follow the rule of improving conductivity of solar cells through the hopping mechanism. The existence of Ce3+ helps in the down-conversion from 430 nm excitation to 530 nm emission. The erbium dopant forms energy levels inside the low-phonon ceria host to up-convert the 780 nm excitations into green and red emissions. When coating reduced erbium-doped ceria nanoparticles on the back side of a solar cell, a promising improvement in the solar cell efficiency has been observed from 15% to 16.5% due to the mutual impact of improved electric conductivity and multi-optical conversions. Finally, the impact of the added coater on the electric field distribution inside the solar cell has been studied.


Sensors | 2015

Nano-Enriched and Autonomous Sensing Framework for Dissolved Oxygen

Nader Shehata; Mohammed Azab; Ishac Kandas; Kathleen Meehan

This paper investigates a nano-enhanced wireless sensing framework for dissolved oxygen (DO). The system integrates a nanosensor that employs cerium oxide (ceria) nanoparticles to monitor the concentration of DO in aqueous media via optical fluorescence quenching. We propose a comprehensive sensing framework with the nanosensor equipped with a digital interface where the sensor output is digitized and dispatched wirelessly to a trustworthy data collection and analysis framework for consolidation and information extraction. The proposed system collects and processes the sensor readings to provide clear indications about the current or the anticipated dissolved oxygen levels in the aqueous media.


Journal of Nanophotonics | 2012

Fluorescence quenching in ceria nanoparticles: dissolved oxygen molecular probe with relatively temperature insensitive Stern–Volmer constant up to 50°C

Nader Shehata; Kathleen Meehan; Donald Leber

Abstract. Ceria nanoparticles (∼7  nm in diameter) were used as a molecular probe for dissolved oxygen sensing based on fluorescence quenching. Strong inverse correlation was found between the amplitude of the fluorescence emission at 520 nm (from excitation shift at 430 nm) and the dissolved oxygen concentration (between 5  and 13  mg/L). The phenomenon employed depends on the concentration, diffusion, and reactivity of the oxygen vacancies in ceria. These vacancies are associated with the conversion of cerium ions from the Ce+4 to Ce+3 states. The Stern–Volmer constant, which is an indication of the sensitivity of gas sensing, was found to be 184.6  M−1 at room temperature. This constant shows good stability between 25°C to 50°C when compared to that of other currently used fluorophores in optical oxygen sensors.


Nanomaterials | 2016

Fluorescent Nanocomposite of Embedded Ceria Nanoparticles in Crosslinked PVA Electrospun Nanofibers

Nader Shehata; Soha Gaballah; Effat Samir; Aya Hamed; Marwa Saad

This paper introduces a new fluorescent nanocomposite of electrospun biodegradable nanofibers embedded with optical nanoparticles. In detail, this work introduces the fluorescence properties of PVA nanofibers generated by the electrospinning technique with embedded cerium oxide (ceria) nanoparticles. Under near-ultra violet excitation, the synthesized nanocomposite generates a visible fluorescent emission at 520 nm, varying its intensity peak according to the concentration of in situ embedded ceria nanoparticles. This is due to the fact that the embedded ceria nanoparticles have optical tri-valiant cerium ions, associated with formed oxygen vacancies, with a direct allowed bandgap around 3.5 eV. In addition, the impact of chemical crosslinking of the PVA on the fluorescence emission is studied in both cases of adding ceria nanoparticles in situ or of a post-synthesis addition via a spin-coating mechanism. Other optical and structural characteristics such as absorbance dispersion, direct bandgap, FTIR spectroscopy, and SEM analysis are presented. The synthesized optical nanocomposite could be helpful in different applications such as environmental monitoring and bioimaging.


Journal of Biomedical Materials Research Part A | 2014

Studying the activity of antitubercluosis drugs inside electrospun polyvinyl alcohol, polyethylene oxide, and polycaprolacton nanofibers.

Ibrahim Hassounah; Nader Shehata; Gade Kimsawatde; Amanda G. Hudson; Nammalwar Sriranganathan; Eugene G. Joseph; Roop L. Mahajan

The activity of antituberculosis drugs (streptomycin sulfate, isoniazid, pyrazinamid, and clarithromycin) embedded in biodegradable nanofibers against Mycobacterium avium has been studied by broth dilution assay and by agar plate assay. These drugs have also been embedded in electrospun polyvinyl alcohol (PVA), polyethylene oxide (PEO), and polycaprolacton (PCL) nanofibers to design a new single tablet containing first-line antituberculosis drugs. Our results show that antituberculosis drugs are active at tiny amounts (up to 300 µg mL(-1) of solvent). However, within polymer matrices, high amounts of drugs are required to avoid unwanted weak interactions within PEO and PCL matrices. The successful design of a single tablet containing required amounts of antituberculosis drugs is essential for the full treatment of tuberculosis in patients with HIV.


Sensors | 2016

Embedded Ceria Nanoparticles in Crosslinked PVA Electrospun Nanofibers as Optical Sensors for Radicals.

Nader Shehata; Effat Samir; Soha Gaballah; Aya Hamed; Asmaa Elrasheedy

This work presents a new nanocomposite of cerium oxide (ceria) nanoparticles embedded in electrospun PVA nanofibers for optical sensing of radicals in solutions. Our ceria nanoparticles are synthesized to have O-vacancies which are the receptors for the radicals extracted from peroxide in water solution. Ceria nanoparticles are embedded insitu in PVA solution and then formed as nanofibers using an electrospinning technique. The formed nanocomposite emits visible fluorescent emissions under 430 nm excitation, due to the active ceria nanoparticles with fluorescent Ce3+ ionization states. When the formed nanocomposite is in contact with peroxide solution, the fluorescence emission intensity peak has been found to be reduced with increasing concentration of peroxide or the corresponding radicals through a fluorescence quenching mechanism. The fluorescence intensity peak is found to be reduced to more than 30% of its original value at a peroxide weight concentration up to 27%. This work could be helpful in further applications of radicals sensing using a solid mat through biomedical and environmental monitoring applications.


Proceedings of SPIE | 2012

Dissolved Oxygen Sensing Based on Fluorescence Quenching of Ceria Nanoparticles

Nader Shehata; Kathleen Meehan; Donald Leber

The development of oxygen sensors has positively impacted the fields of medical science, bioengineering, environmental monitoring, solar cells, industrial process control, and a number of military applications. Fluorescent quenching sensors have an inherent high sensitivity, chemical selectivity, and stability when compared to other types of sensors. While cerium oxide thin films have been used to monitor oxygen in the gas phase, the potential of cerium oxide (ceria) nanoparticles as the active material in sensor for oxygen gas has only recently been investigated. Ceria nanoparticles are one of the most unique nanomaterials that are being studied today due to the diffusion and reactivity of its oxygen vacancies, which contributes to its high oxygen storage capability. The reactivity of the oxygen vacancies, which is also related to conversion of cerium ion from the Ce+4 to Ce+3 state, affects the fluorescence properties of the ceria nanoparticles. Our research demonstrates that the ceria nanoparticles (~7 nm in diameter) have application as a fluorescence quenching sensor to measure dissolved oxygen in water. We have found a strong inverse correlation between the amplitude of the fluorescence emission (λexcitation = 430 nm and λpeak = 520 nm) and the dissolved oxygen concentration between 5 – 13 mg/L. The Stern-Volmer constant, which is an indication of the sensitivity of gas sensing is 184 M-1 for the ceria nanoparticles. The results show that ceria nanoparticles can be used in an improved, robust fluorescence sensor for dissolved oxygen in a liquid medium.

Collaboration


Dive into the Nader Shehata's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aya Hamed

Alexandria University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge