Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nadežda Lukáčová is active.

Publication


Featured researches published by Nadežda Lukáčová.


Progress in Neurobiology | 2001

Cauda equina syndrome

Judita Orendáčová; Dáša Čížková; Jozef Kafka; Nadežda Lukáčová; Martin Marsala; Igor Sulla; Jozef Maršala; Nobuo Katsube

Single or double-level compression of the lumbosacral nerve roots located in the dural sac results in a polyradicular symptomatology clinically diagnosed as cauda equina syndrome. The cauda equina nerve roots provide the sensory and motor innervation of most of the lower extremities, the pelvic floor and the sphincters. Therefore, in a fully developed cauda equina syndrome, multiple signs of sensory disorders may appear. These disorders include low-back pain, saddle anesthesia, bilateral sciatica, then motor weakness of the lower extremities or chronic paraplegia and, bladder dysfunction. Multiple etiologies can cause the cauda equina syndrome. Among them, non-neoplastic compressive etiologies such as herniated lumbosacral discs and spinal stenosis and spinal neoplasms play a significant role in the development of the cauda equina syndrome. Non-compressive etiologies of the cauda equina syndrome include ischemic insults, inflammatory conditions, spinal arachnoiditis and other infectious etiologies. The use of canine, porcine and rat models mimicking the cauda equina syndrome enabled discovery of the effects of the compression on nerve root neural and vascular anatomy, the impairment of impulse propagation and the changes of the neurotransmitters in the spinal cord after compression of cauda equina. The involvement of intrinsic spinal cord neurons in the compression-induced cauda equina syndrome includes anterograde, retrograde and transneuronal degeneration in the lumbosacral segments. Prominent changes of NADPH diaphorase exhibiting, Fos-like immunoreactive and heat shock protein HSP72 were detected in the lumbosacral segments in a short-and long-lasting compression of the cauda equina in the dog. Developments in the diagnosis and treatment of patients with back pain, sciatica and with a herniated lumbar disc are mentioned, including many treatment options available.


Brain Research Bulletin | 2002

Neuropathic pain is associated with alterations of nitric oxide synthase immunoreactivity and catalytic activity in dorsal root ganglia and spinal dorsal horn

Dáša Čížková; Nadežda Lukáčová; Martin Marsala; Jozef Maršala

Previous experiments have suggested that nitric oxide may play an important role in nociceptive transmission in the spinal cord. To assess the possible roles of neuronal nitric oxide synthase (nNOS) in spinal sensitization after nerve injury, we examined the distribution of nNOS immunoreactivity in dorsal root ganglia (DRGs) and dorsal horn of the corresponding spinal segments. NOS catalytic activity was also determined by monitoring the conversion of [3H]arginine to [3H]citrulline in the lumbar (L4-L6) spinal cord segments and DRGs in rats 21 days after unilateral loose ligation of the sciatic nerve. Behavioral signs of tactile and cold allodynia developed in the nerve-ligated rats within 1 week after surgery and lasted up to 21 days. Immunocytochemical staining revealed a significant increase (approximately 6.7-fold) of nNOS-immunoreactive neurons and fibers in the DRGs L4-L6. No significant changes were detected in the number of nNOS-positive neurons in laminae I-II of the spinal segments L4-L6 ipsilateral to nerve ligation. However, an increased number of large stellate or elongated somata in deep laminae III-V of the L5 segment expressed high nNOS immunoreactivity. The alterations of NOS catalytic activity in the spinal segments L4-L6 and corresponding DRGs closely correlated with nNOS distribution detected by immunocytochemistry. No such changes were detected in the contralateral DRGs or spinal cord of sham-operated rats. The results indicate that marked alterations of nNOS in the DRG cells and in the spinal cord may contribute to spinal sensory processing as well as to the development of neuronal plasticity phenomena in the dorsal horn.


Neurochemical Research | 1996

Ischemia-reperfusion injury in the spinal cord of rabbits strongly enhances lipid peroxidation and modifies phospholipid profiles.

Nadežda Lukáčová; G. Halát; M. Chavko; Jozef Maršala

The effect of spinal cord ischemia (10, 20, and 40 min) and post-ischemic reperfusion (10, 30, and 60 min) on lipid peroxidation and phospholipids was investigated. Spinal cord ischemia was accompanied by lipolytic processes with significant changes in concentration of lipid peroxidation products (LPP). Reestablishment of the blood supply after 10 min ischemia was accompanied by significantly increased levels of thiobarbituric acid reactive substances (TBA-RS) after 10 and 30 min of reperfusion. Following 20 and 40 min ischemia a significant increase was observed at all reperfusion periods. Ischemia itself significantly reduced the concentration of phosphatidyl inositol (IP), phosphatidyl ethanolamine (EP) and ethanolamine plasmalogens (Epls). Significant changes were observed in concentration of phosphatidyl serine (SP) too, but only after 20 and 40 min of ischemia. The concentration of phosphatidic acid (PA) was significantly reduced only after 10 min of ischemia. The onset of reperfusion after ischemia was accompanied by a diverse pattern of changes in PA, IP, Epls and SP, while the concentration of EP remained at the above mentioned ischemic intervals.


Brain Research | 1992

Graded postischemic reoxygenation reduces lipid peroxidation and reperfusion injury in the rabbit spinal cord.

A. Fercakova; G. Halát; Martin Marsala; Nadežda Lukáčová; Jozef Maršala

The effect of graded postischemic reoxygenation on lipid peroxidation, neurological recovery and the degree of spinal cord damage after 20 min abdominal aorta ligature was tested in the rabbit. In comparison with normoxic recirculation, the graded postischemic reoxygenation (GPIR) during early phase of reperfusion (30 min) significantly reduced the level of lipid peroxidation products (LPP) in vivo and in vitro after 1 h survival. Neuropathological changes in animals with normoxic reperfusion showed gradual deterioration ranging from appearance of heavy argyrophilic neurons after 1 h reperfusion followed by neuronal necroses after 12 h survival to the development of an extensive spongy lesion reaching ventral horn and intermediate zone 2 days postoperatively. The neuroprotective effect of graded postischemic reoxygenation was evident even after 2 days survival with preserved structural integrity of the gray matter as confirmed by light and electron microscopy. The results indicate that graded postischemic reoxygenation during 1 h reperfusion can reduce lipid peroxidation and suppress irreversible neuronal damage using developing during the early reperfusion phase.


Neuroscience | 1999

Segmental and laminar distributions of nicotinamide adenine dinucleotide phosphate-diaphorase-expressing and neuronal nitric oxide synthase-immunoreactive neurons versus radioassay detection of catalytic nitric oxide synthase activity in the rabbit spinal cord

Nadežda Lukáčová; D. Čı́žková; Martin Marsala; Pavol Jalč; Jozef Maršala

The distributions of neuronal nitric oxide synthase-immunoreactive neurons and of nicotinamide adenine dinucleotide phosphate-diaphorase activity were studied in the C6, Th2, L1, L5, S2 and S3 segments and laminae in the rabbit spinal cord and compared with the catalytic nitric oxide synthase activity, determined by monitoring the conversion of [3H]arginine to [3H]citrulline in the same segments and laminae. Morphologically, a heterogeneous population of nicotinamide adenine dinucleotide phosphate-diaphorase-expressing and neuronal nitric oxide synthase-immunoreactive neurons was detected in the superficial and deep dorsal horn and the pericentral region in all segments studied, and in the intermediolateral cell column of the thoracic and lumbosacral segments. A disproportionate distribution of both neuronal categories which had a significantly higher number of nicotinamide adenine dinucleotide phosphate-diaphorase-expressing rather than neuronal nitric oxide synthase-immunoreactive cell bodies was found in all segments. The catalytic nitric oxide synthase activity was distributed unequally in the C6, Th2, L1, L5, S2 and S3 segments, with a comparatively low value in the Th2 segment (70 +/- 5.1 d.p.m./microg protein) in comparison with the S3 segment, where the highest level (140 +/- 5.5 d.p.m./microg protein) was found. A close correlation between the number of neuronal nitric oxide synthase-immunoreactive somata and catalytic nitric oxide synthase activity was revealed in the dorsal horn (laminae I-VI). Whereas a low number of neuronal nitric oxide synthase-immunoreactive somata in laminae VII-X was found in the L5, S2 and S3 segments, the values of catalytic nitric oxide synthase activity in the same laminae and segments were found to be exceedingly high. These findings indicate that the occurrence of many neuronal nitric oxide synthase-immunoreactive fibers (mainly axons), and dense, punctate, non-somatic neuronal nitric oxide synthase immunopositivity in the neuropil staining of the same laminae and segments, can substantially enhance catalytic nitric oxide synthase activity.


Journal of Chemical Neuroanatomy | 2004

Premotor nitric oxide synthase immunoreactive pathway connecting lumbar segments with the ventral motor nucleus of the cervical enlargement in the dog

Jozef Maršala; Nadežda Lukáčová; Dáša Čížková; Imrich Lukáč; Karolina Kucharova; Martin Marsala

In this study we investigate the occurrence and origin of punctate nitric oxide synthase immunoreactivity in the neuropil of the ventral motor nucleus in C7-Th1 segments of the dog spine, which are supposed to be the terminal field of an ascending premotor propriospinal nitric oxide synthase-immunoreactive pathway. As the first step, nitric oxide synthase immunohistochemistry was used to distinguish nitric oxide synthase-immunoreactive staining of the ventral motor nucleus. Dense, punctate nitric oxide synthase immunoreactivity was found on control sections in the neuropil of the ventral motor nucleus. After hemisection at Th10-11, axotomy-induced retrograde changes consisting in a strong upregulation of nitric oxide synthase-containing neurons were found mostly unilaterally in lamina VIII, the medial part of lamina VII and in the pericentral region in all segments of the lumbosacral enlargement. Concurrently, a strong depletion of the punctate nitric oxide synthase immunopositivity in the neuropil of the ventral motor nucleus ipsilaterally with the hemisection was detected, thus revealing that an uncrossed ascending premotor propriospinal pathway containing a fairly high number of nitric oxide synthase-immunoreactive fibers terminates in the ventral motor nucleus. Application of the retrograde fluorescent tracer Fluorogold injected into the ventral motor nucleus and analysis of alternate sections processed for nitric oxide synthase immunocytochemistry revealed the presence of Fluorogold-labeled and nitric oxide synthase-immunoreactive axons in the ventrolateral funiculus and in the lateral and medial portions of the ventral column throughout the thoracic and upper lumbar segments. A noticeable number of Fluorogold-labeled and nitric oxide synthase-immunoreactive somata detected on consecutive sections were found in the lumbosacral enlargement, mainly in laminae VIII-IX, the medial part of lamina VII and in the pericentral region (lamina X), ipsilaterally with the injection of Fluorogold into the ventral motor nucleus. In summary, the present study provides evidence for a hitherto unknown ascending premotor propriospinal nitric oxide synthase-immunoreactive pathway connecting the lumbosacral enlargement with the motoneurons of the ventral motor nucleus in the dog.


Neurochemical Research | 1989

Effect of partial ischemia on phospholipids and postischemic lipid peroxidation in rabbit spinal cord

G. Halát; M. Chavko; Nadežda Lukáčová; D. Kluchová; Jozef Maršala

Rabbit spinal cord, subjected to severe partial ischemia induced by abdominal aorta ligation tightly below the renal arteries, was analyzed for phospholipid composition and levels of lipid peroxidation products after 10, 20, and 40 min of the insult. Under conditions when spinal cord blood flow was decreased below 5% of control, concentrations of inositol and ethanolamine phospholipids were decreased by 30% and 10%, respectively. Phosphatidic acid concentration was also altered during ischemia. No accumulation of thiobarbituric acid reactive substances (TBA-RS), conjugated dienes and fluorescent lipid soluble material was found throughout the ischemic period. Pattern of TBA-RS, conjugated diene, and fluorophore formation during postischemic in vitro incubation without and with a peroxidation couple (Fe2+, ascorbic acid) showed increased susceptibility to postischemic lipid peroxidation in tissues after 20 and 40 min of ischemia.


Brain Research | 2014

The pattern of glutamate-induced nitric oxide dynamics in vivo and its correlation with nNOS expression in rat hippocampus, cerebral cortex and striatum

Cátia F. Lourenço; Nuno Ferreira; Ricardo M. Santos; Nadežda Lukáčová; Rui M. Barbosa; João Laranjinha

Nitric oxide (NO) is a diffusible intercellular messenger, acting via volume signaling in the brain and, therefore, the knowledge of its temporal dynamics is determinant to the understanding of its neurobiological role. However, such an analysis in vivo is challenging and indirect or static approaches are mostly used to infer NO bioactivity. In the present work we measured the glutamate-dependent NO temporal dynamics in vivo in the hippocampus (CA1, CA3 and DG subregions), cerebral cortex and striatum, using NO selective microelectrodes. Concurrently, the immunolocalization of nNOS was evaluated in each region. A transitory increase in NO levels occurred at higher amplitudes in the striatum and hippocampus relatively to the cortex. In the hippocampus, subtle differences in the profiles of NO signals were observed along the trisynaptic loop, with CA1 exhibiting the largest signals. The topography of NO temporal dynamics did not fully overlap with the pattern of the density of nNOS expression, suggesting that, complementary to the distribution of nNOS, the local regulation of NO synthesis as well as the decay pathways critically determine the effective NO concentration sensed by a target within the diffusional spread of this free radical. In sum, the rate and pattern of NO changes here shown, by incorporating regulatory mechanisms and processes that affect NO synthesis and decay, provide refined information critical for the understanding of NO multiple actions in the brain.


Cellular and Molecular Neurobiology | 2006

Immunohistochemical, histochemical and radioassay analysis of nitric oxide synthase immunoreactivity in the lumbar and sacral dorsal root ganglia of the dog.

Nadežda Lukáčová; Dalibor Kolesár; Martin Marsala; Jozef Maršala

SummaryIn this study, immunohistochemistry for neuronal nitric oxide synthase (bNOS-IR), nicotinamide adenine dinucleotide phosphate diaphorase histochemistry (NADPHd) and nitric oxide synthase radioassay were used to study the occurrence, number and distribution pattern of nitric oxide synthesizing neurons in the lumbar (L1–L7) and sacral (S1–S3) dorsal root ganglia of the dog. Nitric oxide synthase immunolabelling was present in a large number of small- (area <1000 μm2) and medium-sized (area 1000–2000 μm2) as well as in a limited number of large-sized (area >2000 μm2) neurons. Although neuronal nitric oxide synthase immunolabelling and histochemical staining provided intense staining of multiple small- and medium-sized neurons in all lumbar and sacral dorsal root ganglia, immunolabelled or histochemically stained somata exhibited little topographic distribution in individual dorsal root ganglia. Great heterogeneity was noticed in the immunolabelling of medium-sized nitric oxide synthase immunopositive neurons ranging from lightly immunolabelled somata to heavily immunoreactive ones with completely obscured nuclei. Both staining procedures proved to be highly effective in visualizing intraganglionic fibers of various diameters. In general, the largest fibers revealed at the peripheral end of lumbar and sacral dorsal root ganglia were larger, 6.49–9.35 μm in diameter, while those running centrally and proceeding into the dorsal roots were about 30% reduced, ranging between 5.32 and 8.67 μm in diameter. Peripherally, the occurrence of nitric oxide synthase detected in axonal profiles, and confirmed histochemically, in the specimens of the femoral and sciatic nerves, is the first indication of the presence of nitric oxide synthase in the peripheral processes of somata located in L4–S2 dorsal root ganglia. Large and thin central nitric oxide synthase immunoreactive processes of L1–S3 dorsal root ganglion neurons segregate shortly before entering the spinal cord, the former making a massive medial bundle in the dorsal root accompanied by a slim lateral bundle penetrating Lissauers tract. Quantitative assessment of the distribution of bNOS-IR and/or NADPHd-stained neurons showed a peculiar pattern in relation to spinal levels. Apparent incongruity was found in the total number of NADPHd-stained versus bNOS-IR neurons, demonstrating a clear prevalence of small bNOS-IR somata in all lumbar ganglia, while medium-sized NADPHd-stained somata clearly prevailed all along the rostrocaudal axis with a peak in L5 ganglion. While the number of small bNOS-IR neurons clearly outnumbered NADPHd-stained and NADPHd-unstained somata in S1–S3 ganglia, an inverse relation appeared comparing the total number of medium-sized NADPHd-stained and NADPHd-unstained somata compared with the number of moderate and intense bNOS-IR neurons. Densitometry of bNOS-IR and NADPHd-stained neurons in lumbar and sacral ganglia revealed two distinct subsets of densitometric profiles, one relating to more often found medium-sized bNOS immunolabelled and the other, characteristic for moderately bNOS immunoreactive somata of the same cell size. Considerable differences in catalytic nitric oxide synthase activity, determined by conversion of [3H]arginine to [3H]citrulline were obtained in lumbosacral dorsal root ganglia all along the lumbosacral intumescence, the lowest (0.898± 0.2 dpm/min/μg protein) being in the L4 dorsal root ganglion and the highest (4.194± 0.2 dpm/min/μg protein) in the S2 dorsal root ganglion.


Cellular and Molecular Neurobiology | 2006

The effect of a spinal cord hemisection on changes in nitric oxide synthase pools in the site of injury and in regions located far away from the injured site.

Nadežda Lukáčová; Mária Kolesárová; Karolina Kucharova; Jaroslav Pavel; Dalibor Kolesár; Jozef Radoňak; Martin Marsala; Małgorzata Chalimoniuk; Józef Langfort; Jozef Maršala

1. The present study was designed to examine the nitric oxide synthase activities (constitutive and inducible) in the site of injury in response to Th10-Th11 spinal cord hemisection and, to determine whether unilateral disconnection of the spinal cord influences the NOS pools on the contra- and ipsilateral sides in segments located far away from the epicentre of injury.2. A radioassay detection was used to determine Ca2+-dependent and inducible nitric oxide synthase activities. Somal, axonal and neuropil neuronal nitric oxide synthase was assessed by immunocytochemical study. A quantitative assessment of neuronal nitric oxide synthase immunoreactivity was made by an image analyser. The level of neuronal nitric oxide synthase protein was measured by the Western blot analysis.3. Our data show the increase of inducible nitric oxide synthase activity and a decrease of Ca2+-dependent nitric oxide synthase activity in the injured site analysed 1 and 7 days after surgery. In segments remote from the epicentre of injury the inducible nitric oxide synthase activity was increased at both time points. Ca2+-dependent nitric oxide synthase activity had decreased in L5-S1 segments in a group of animals surviving for 7 days. A hemisection performed at thoracic level did not cause significant difference in the nitric oxide synthase activities and in the level of neuronal nitric oxide synthase protein between the contra- and ipsilateral sides in C6-Th1 and L5-S1 segments taken as a whole. Significant differences were observed, but only when the spinal cord was analysed segment by segment, and/or was divided into dorsal and ventral parts. The cell counts in the cervicothoracic (C7-Th1) and lumbosacral (L5-S1) enlargements revealed changes in neuronal nitric oxide synthase immunoreactivity on the ipsilateral side of the injury. The densitometric area measurements confirmed the reduction of somal, neuropil and axonal neuronal nitric oxide synthase immunoreactive staining in the ventral part of rostrally oriented segments.4. Our findings provide evidence that the changes in nitric oxide synthase pools are limited not only to impact zone, but spread outside the original lesion. The regional distribution of nitric oxide synthase activity and neuronal nitric oxide synthase immunoreactivity, measured segment by segment shows that nitric oxide may play a significant role in the stepping cycle in the quadrupeds.

Collaboration


Dive into the Nadežda Lukáčová's collaboration.

Top Co-Authors

Avatar

Jozef Maršala

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Martin Marsala

University of California

View shared research outputs
Top Co-Authors

Avatar

Jaroslav Pavel

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dalibor Kolesár

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

A Davidova

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ján Gálik

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Józef Langfort

Polish Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge