Nadezda Zikova
Academy of Sciences of the Czech Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nadezda Zikova.
Occupational and Environmental Medicine | 2016
Daniela Pelclova; Vladimir Zdimal; Zdenka Fenclova; Stepanka Vlckova; Francesco Turci; Ingrid Corazzari; Petr Kačer; Jaroslav Schwarz; Nadezda Zikova; Otakar Makeš; Kamila Syslová; Martin Komarc; Jaroslav Belacek; Tomas Navratil; M Machajova; Sergey Zakharov
Objective The use of nanotechnology is growing enormously and occupational physicians have an increasing interest in evaluating potential hazards and finding biomarkers of effect in workers exposed to nanoparticles. Methods A study was carried out with 36 workers exposed to (nano)TiO2 pigment and 45 controls. Condensate (EBC) titanium and markers of oxidation of nucleic acids (including 8-hydroxy-2-deoxyguanosine (8-OHdG), 8-hydroxyguanosine (8-OHG), 5-hydroxymethyl uracil (5-OHMeU)) and proteins (such as o-tyrosine (o-Tyr), 3-chlorotyrosine (3-ClTyr) and 3-nitrotyrosine (3-NOTyr)) were analysed from samples of their exhaled breath. Results In the production workshops, the median total mass 2012 and 2013 TiO2 concentrations were 0.65 and 0.40 mg/m3, respectively. The median numbers of concentrations measured by the scanning mobility particle sizer (SMPS) and aerodynamic particle sizer (APS) were 1.98×104 and 2.32×104 particles/cm3, respectively; and about 80% of those particles were smaller than 100 nm in diameter. In the research workspace, lower aerosol concentrations (0.16 mg/m3 and 1.32×104 particles/cm3) were found. Titanium in the EBC was significantly higher in production workers (p<0.001) than in research workers and unexposed controls. Accordingly, most EBC oxidative stress markers, including in the preshift samples, were higher in production workers than in the two other groups. Multiple regression analysis confirmed an association between the production of TiO2 and the levels of studied biomarkers. Conclusions The concentration of titanium in EBC may serve as a direct exposure marker in workers producing TiO2 pigment; the markers of oxidative stress reflect the local biological effect of (nano)TiO2 in the respiratory tract of the exposed workers.
Journal of Breath Research | 2016
Daniela Pelclova; Vladimir Zdimal; Petr Kačer; Zdenka Fenclova; Stepanka Vlckova; Kamila Syslová; Tomáš Navrátil; Jaroslav Schwarz; Nadezda Zikova; Hana Barosova; Francesco Turci; Martin Komarc; Tomas Pelcl; Jaroslav Belacek; Jana Kukutschová; Sergey Zakharov
Markers of oxidative stress and inflammation were analysed in the exhaled breath condensate (EBC) and urine samples of 14 workers (mean age 43 ± 7 years) exposed to iron oxide aerosol for an average of 10 ± 4 years and 14 controls (mean age 39 ± 4 years) by liquid chromatography-electrospray ionization-mass spectrometry/mass spectrometry (LC-ESI-MS/MS) after solid-phase extraction. Aerosol exposure in the workplace was measured by particle size spectrometers, a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS), and by aerosol concentration monitors, P-TRAK and DustTRAK DRX. Total aerosol concentrations in workplace locations varied greatly in both time and space. The median mass concentration was 0.083 mg m(-3) (IQR 0.063-0.133 mg m(-3)) and the median particle concentration was 66 800 particles cm(-3) (IQR 16,900-86,900 particles cm(-3)). In addition, more than 80% of particles were smaller than 100 nm in diameter. Markers of oxidative stress, malondialdehyde (MDA), 4-hydroxy-trans-hexenale (HHE), 4-hydroxy-trans-nonenale (HNE), 8-isoProstaglandin F2α (8-isoprostane) and aldehydes C6-C12, in addition to markers of nucleic acid oxidation, including 8-hydroxy-2-deoxyguanosine (8-OHdG), 8-hydroxyguanosine (8-OHG), 5-hydroxymethyl uracil (5-OHMeU), and of proteins, such as o-tyrosine (o-Tyr), 3-chlorotyrosine (3-ClTyr), and 3-nitrotyrosine (3-NOTyr) were analysed in EBC and urine by LC-ESI-MS/MS. Almost all markers of lipid, nucleic acid and protein oxidation were elevated in the EBC of workers comparing with control subjects. Elevated markers were MDA, HNE, HHE, C6-C10, 8-isoprostane, 8-OHdG, 8-OHG, 5-OHMeU, 3-ClTyr, 3-NOTyr, o-Tyr (all p < 0.001), and C11 (p < 0.05). Only aldehyde C12 and the pH of samples did not differ between groups. Markers in urine were not elevated. These findings suggest the adverse effects of nano iron oxide aerosol exposure and support the utility of oxidative stress biomarkers in EBC. The analysis of urine oxidative stress biomarkers does not support the presence of systemic oxidative stress in iron oxide pigment production workers.
Nanotoxicology | 2017
Daniela Pelclova; Vladimir Zdimal; Petr Kačer; Nadezda Zikova; Martin Komarc; Zdenka Fenclova; Stepanka Vlckova; Jaroslav Schwarz; Otakar Makeš; Kamila Syslová; Tomáš Navrátil; Francesco Turci; Ingrid Corazzari; Sergey Zakharov; Dhimiter Bello
Abstract Nanoscale titanium dioxide (nanoTiO2) is a commercially important nanomaterial. Animal studies have documented lung injury and inflammation, oxidative stress, cytotoxicity and genotoxicity. Yet, human health data are scarce and quantitative risk assessments and biomonitoring of exposure are lacking. NanoTiO2 is classified by IARC as a group 2B, possible human carcinogen. In our earlier studies we documented an increase in markers of inflammation, as well as DNA and protein oxidative damage, in exhaled breath condensate (EBC) of workers exposed nanoTiO2. This study focuses on biomarkers of lipid oxidation. Several established lipid oxidative markers (malondialdehyde, 4-hydroxy-trans-hexenal, 4-hydroxy-trans-nonenal, 8-isoProstaglandin F2α and aldehydes C6–C12) were studied in EBC and urine of 34 workers and 45 comparable controls. The median particle number concentration in the production line ranged from 1.98 × 104 to 2.32 × 104 particles/cm3 with ∼80% of the particles <100 nm in diameter. Mass concentration varied between 0.40 and 0.65 mg/m3. All 11 markers of lipid oxidation were elevated in production workers relative to the controls (p < 0.001). A significant dose-dependent association was found between exposure to TiO2 and markers of lipid oxidation in the EBC. These markers were not elevated in the urine samples. Lipid oxidation in the EBC of workers exposed to (nano)TiO2 complements our earlier findings on DNA and protein damage. These results are consistent with the oxidative stress hypothesis and suggest lung injury at the molecular level. Further studies should focus on clinical markers of potential disease progression. EBC has reemerged as a sensitive technique for noninvasive monitoring of workers exposed to engineered nanoparticles.
Tellus B | 2016
Nadezda Zikova; Vladimir Zdimal
The influence of in-cloud and below-cloud scavenging, described by the obscurities (mist, fog and shallow fog) and precipitation, on submicron atmospheric aerosol (AA) particle number size distributions (PNSDs) was studied using 5 years of measurements at the rural background station Košetice. The typical PNSDs during individual meteorological phenomena were compared, and the change in the concentrations before and after the beginning of the phenomenon, the scavenging coefficient λ s , and the rate of change of the AA concentrations with time were computed. It was found that both obscurities and precipitation have a strong influence on the AA concentrations, both on the total number concentrations and on the PNSDs. The presence of phenomena even changes the number of modes on the PNSDs. The PNSD main mode is shifted to the larger particles, and the concentrations of particles smaller than 50 nm in diameter are considerably lower. In nucleation mode, however, wet scavenging does not seem to be the main process influencing the AA concentrations, although its considerable effect on the concentration was proved. During obscurities, there is a typical PNSD to which the PNSDs converge at any mist/fog/shallow fog event. The concentrations of AA particles smaller than 80 nm are lower than they are during periods without any phenomenon recorded, and the concentrations of the strongly prevailing accumulation mode are higher. During liquid precipitation, PNSDs are lower when compared to non-event periods. With larger droplets of the phenomenon, the position of the main mode of the bimodal PNSDs is shifted to the smaller particles. The process of gas-to-particle conversion takes place in the breaks from precipitation during a rain showers period. Precipitation containing frozen hydrometeors behaves differently from liquid precipitation. Concentrations of AA particles larger than 200 nm during precipitation containing solid particles do not differ from non-event cases, suggesting insignificant scavenging.
Reviews on environmental health | 2017
Daniela Pelclova; Vladimir Zdimal; Petr Kačer; Martin Komarc; Zdenka Fenclova; Stepanka Vlckova; Nadezda Zikova; Jaroslav Schwarz; Otakar Makeš; Tomáš Navrátil; Sergey Zakharov; Dhimiter Bello
Abstract Nanoscale titanium dioxide (nanoTiO2) is a commercially important nanomaterial used in numerous applications. Experimental studies with nanotitania have documented lung injury and inflammation, oxidative stress, and genotoxicity. Production workers in TiO2 manufacturing with a high proportion of nanoparticles and a mixture of other air pollutants, such as gases and organic aerosols, had increased markers of oxidative stress, including DNA and protein damage, as well as lipid peroxidation in their exhaled breath condensate (EBC) compared to unexposed controls. Office workers were observed to get intermittent exposures to nanoTiO2 during their process monitoring. The aim of this study was to investigate the impact of such short-term exposures on the markers of health effects in office workers relative to production workers from the same factory. Twenty-two office employees were examined. They were occupationally exposed to (nano)TiO2 aerosol during their daily visits of the production area for an average of 14±9 min/day. Median particle number concentration in office workers while in the production area was 2.32×104/cm3. About 80% of the particles were <100 nm in diameter. A panel of biomarkers of lipid oxidation, specifically malondialdehyde (MDA), 4-hydroxy-trans-hexenal (HHE), 4-hydroxy-trans-nonenal (HNE), 8-isoprostaglandin F2α (8-isoprostane), and aldehydes C6−C12, were studied in the EBC and urine of office workers and 14 unexposed controls. Nine markers of lipid oxidation were elevated in the EBC of office employees relative to controls (p<0.05); only 8-isoprostane and C11 were not increased. Significant association was found in the multivariate analysis between their employment in the TiO2 production plant and EBC markers of lipid oxidation. No association was seen with age, lifestyle factors, or environmental air contamination. The EBC markers in office employees reached about 50% of the levels measured in production workers, and the difference between production workers and office employees was highly significant (p<0.001). None of these biomarkers were elevated in urine. The approach presented here seems to be very sensitive and useful for non-invasive monitoring of employees exposed to air pollutants, including gases, organic aerosols, and nanoTiO2, and may prove useful for routine biomonitoring purposes. Among them, aldehydes C6, C8, C9, and C10 appear to be the most sensitive markers of lipid oxidation in similar occupational cohorts. One major challenge with sensitive biomonitoring techniques, however, is their non-specificity and difficulty in interpreting the meaning of their physiological values in the context of chronic disease development and damage-repair kinetics.
Atmospheric Chemistry and Physics | 2011
Ari Asmi; A. Wiedensohler; P. Laj; A. M. Fjaeraa; K. Sellegri; W. Birmili; E. Weingartner; U. Baltensperger; Vladimir Zdimal; Nadezda Zikova; J.-P. Putaud; Angela Marinoni; Peter Tunved; Hans-Christen Hansson; Markus Fiebig; Niku Kivekäs; Heikki Lihavainen; Eija Asmi; Vidmantas Ulevicius; Pasi Aalto; Erik Swietlicki; Adam Kristensson; N. Mihalopoulos; N. Kalivitis; Ivo Kalapov; Gyula Kiss; G. de Leeuw; Bas Henzing; Roy M. Harrison; David C. S. Beddows
Atmospheric Chemistry and Physics | 2011
C. L. Reddington; Kenneth S. Carslaw; D. V. Spracklen; M. G. Frontoso; L. Collins; Joonas Merikanto; Andreas Minikin; Thomas Hamburger; Hugh Coe; Markku Kulmala; Pasi Aalto; H. Flentje; C. Plass-Dülmer; W. Birmili; A. Wiedensohler; B. Wehner; T. Tuch; A. Sonntag; Colin D. O'Dowd; S. G. Jennings; R. Dupuy; U. Baltensperger; E. Weingartner; H.-C. Hansson; Peter Tunved; P. Laj; K. Sellegri; J. Boulon; J.-P. Putaud; C. Gruening
Journal of Breath Research | 2015
Daniela Pelclova; Hana Barosova; Jana Kukutschová; Vladimir Zdimal; Tomas Navratil; Zdenka Fenclova; Stepanka Vlckova; Jaroslav Schwarz; Nadezda Zikova; Petr Kačer; Martin Komarc; Jaroslav Belacek; Sergey Zakharov
Atmospheric Chemistry and Physics | 2013
David C. S. Beddows; M. Dall'Osto; Roy M. Harrison; Markku Kulmala; Ari Asmi; A. Wiedensohler; P. Laj; A. M. Fjaeraa; K. Sellegri; W. Birmili; Nicolas Bukowiecki; E. Weingartner; Urs Baltensperger; Vladimir Zdimal; Nadezda Zikova; J-P Putaud; Angela Marinoni; Peter Tunved; Hans-Christen Hansson; Markus Fiebig; Niku Kivekäs; Erik Swietlicki; Heikki Lihavainen; Eija Asmi; Vidmantas Ulevicius; Pasi Aalto; N. Mihalopoulos; N. Kalivitis; Ivo Kalapov; Gyula Kiss
Journal of Breath Research | 2016
Daniela Pelclova; Vladimir Zdimal; Petr Kačer; Zdenka Fenclova; Stepanka Vlckova; Martin Komarc; Tomáš Navrátil; Jaroslav Schwarz; Nadezda Zikova; Otakar Makeš; Kamila Syslová; Jaroslav Belacek; Sergey Zakharov