Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nadia A. Rana is active.

Publication


Featured researches published by Nadia A. Rana.


Cell | 2008

Rumi Is a CAP10 Domain Glycosyltransferase that Modifies Notch and Is Required for Notch Signaling

Melih Acar; Hamed Jafar-Nejad; Hideyuki Takeuchi; Akhila Rajan; Dafina Ibrani; Nadia A. Rana; Hongling Pan; Robert S. Haltiwanger; Hugo J. Bellen

Notch signaling is broadly used to regulate cell-fate decisions. We have identified a gene, rumi, with a temperature-sensitive Notch phenotype. At 28 degrees C-30 degrees C, rumi clones exhibit a full-blown loss of Notch signaling in all tissues tested. However, at 18 degrees C only a mild Notch phenotype is evident. In vivo analyses reveal that the target of Rumi is the extracellular domain of Notch. Notch accumulates intracellularly and at the cell membrane of rumi cells but fails to be properly cleaved, despite normal binding to Delta. Rumi is an endoplasmic reticulum-retained protein with a highly conserved CAP10 domain. Our studies show that Rumi is a protein O-glucosyltransferase, capable of adding glucose to serine residues in Notch EGF repeats with the consensus C1-X-S-X-P-C2 sequence. These data indicate that by O-glucosylating Notch in the ER, Rumi regulates its folding and/or trafficking and allows signaling at the cell membrane.


Current Opinion in Structural Biology | 2011

Fringe benefits: Functional and structural impacts of O-glycosylation on the extracellular domain of Notch receptors

Nadia A. Rana; Robert S. Haltiwanger

The Notch family of receptors plays essential roles in many phases of development, and dysregulation of Notch activity is increasingly recognized as a player in many diseases. O-Glycosylation of the Notch extracellular domain is essential for Notch activity, and tissue-specific alterations in the glycan structures are known to regulate activity. Here we review recent advances in identification and characterization of the enzymes responsible for glycosylating Notch and molecular mechanisms for how these O-glycans affect Notch activity.


Journal of Biological Chemistry | 2007

In Vitro Reconstitution of the Modulation of Drosophila Notch-Ligand Binding by Fringe

Aiguo Xu; Nicola Haines; Malgosia Dlugosz; Nadia A. Rana; Hideyuki Takeuchi; Robert S. Haltiwanger; Kenneth D. Irvine

Notch signaling plays critical roles in animal development and physiology. The activation of Notch receptors by their ligands is modulated by Fringe-dependent glycosylation. Fringe catalyzes the addition of N-acetylglucosamine in a β1,3 linkage onto O-fucose on epidermal growth factor-like domains. This modification of Notch by Fringe influences the binding of Notch ligands to Notch receptors. However, prior studies have relied on in vivo glycosylation, leaving unresolved the question of whether addition of N-acetylglucosamine is sufficient to modulate Notch-ligand interactions on its own, or whether instead it serves as a precursor to subsequent post-translational modifications. Here, we describe the results of in vitro assays using purified components of the Drosophila Notch signaling pathway. In vitro glycosylation and ligand binding studies establish that the addition of N-acetylglucosamine onto O-fucose in vitro is sufficient both to enhance Notch binding to the Delta ligand and to inhibit Notch binding to the Serrate ligand. Further elongation by galactose does not detectably influence Notch-ligand binding in vitro. Consistent with these observations, carbohydrate compositional analysis and mass spectrometry on Notch isolated from cells identified only N-acetylglucosamine added onto Notch in the presence of Fringe. These observations argue against models in which Fringe-dependent glycosylation modulates Notch signaling by acting as a precursor to subsequent modifications and instead establish the simple addition of N-acetylglucosamine as a basis for the effects of Fringe on Drosophila Notch-ligand binding.


Science | 2012

A Mutation in EGF Repeat-8 of Notch Discriminates Between Serrate/Jagged and Delta Family Ligands

Shinya Yamamoto; Wu-Lin Charng; Nadia A. Rana; Shinako Kakuda; Manish Jaiswal; Vafa Bayat; Bo Xiong; Ke Zhang; Hector Sandoval; Gabriela David; Hao Wang; Robert S. Haltiwanger; Hugo J. Bellen

Discerning a Difference Neighboring cells communicate via the Notch signaling pathway to make numerous decisions. Notch receptors are known to distinguish between two distinct ligand families, Delta and Serrate/Jagged, in different contexts. Posttranslational sugar modifications have been shown to play a role in this process, but it is not clear if other features of Notch are involved. Using a forward genetic approach in fruit flies, Yamamoto et al. (p. 1229) identified an evolutionarily conserved amino acid in the extracellular domain of Notch necessary for Serrate/Jagged signaling but dispensable for Delta signaling. A genetic screen identifies an extracellular motif in a conserved signaling receptor that confers ligand specificity. Notch signaling affects many developmental and cellular processes and has been implicated in congenital disorders, stroke, and numerous cancers. The Notch receptor binds its ligands Delta and Serrate and is able to discriminate between them in different contexts. However, the specific domains in Notch responsible for this selectivity are poorly defined. Through genetic screens in Drosophila, we isolated a mutation, Notchjigsaw, that affects Serrate- but not Delta-dependent signaling. Notchjigsaw carries a missense mutation in epidermal growth factor repeat-8 (EGFr-8) and is defective in Serrate binding. A homologous point mutation in mammalian Notch2 also exhibits defects in signaling of a mammalian Serrate homolog, Jagged1. Hence, an evolutionarily conserved valine in EGFr-8 is essential for ligand selectivity and provides a molecular handle to study numerous Notch-dependent signaling events.


Journal of Biological Chemistry | 2011

O-Glucose Trisaccharide Is Present at High but Variable Stoichiometry at Multiple Sites on Mouse Notch1

Nadia A. Rana; Aleksandra Nita-Lazar; Hideyuki Takeuchi; Shinako Kakuda; Kelvin B. Luther; Robert S. Haltiwanger

Notch activity is regulated by both O-fucosylation and O-glucosylation, and Notch receptors contain multiple predicted sites for both. Here we examine the occupancy of the predicted O-glucose sites on mouse Notch1 (mN1) using the consensus sequence C1XSXPC2. We show that all of the predicted sites are modified, although the efficiency of modifying O-glucose sites is site- and cell type-dependent. For instance, although most sites are modified at high stoichiometries, the site at EGF 27 is only partially glucosylated, and the occupancy of the site at EGF 4 varies with cell type. O-Glucose is also found at a novel, non-traditional consensus site at EGF 9. Based on this finding, we propose a revision of the consensus sequence for O-glucosylation to allow alanine N-terminal to cysteine 2: C1XSX(A/P)C2. We also show through biochemical and mass spectral analyses that serine is the only hydroxyamino acid that is modified with O-glucose on EGF repeats. The O-glucose at all sites is efficiently elongated to the trisaccharide Xyl-Xyl-Glc. To establish the functional importance of individual O-glucose sites in mN1, we used a cell-based signaling assay. Elimination of most individual sites shows little or no effect on mN1 activation, suggesting that the major effects of O-glucose are mediated by modification of multiple sites. Interestingly, elimination of the site in EGF 28, found in the Abruptex region of Notch, does significantly reduce activity. These results demonstrate that, like O-fucose, the O-glucose modifications of EGF repeats occur extensively on mN1, and they play important roles in Notch function.


Journal of Biological Chemistry | 2009

Functional UDP-xylose Transport across the Endoplasmic Reticulum/Golgi Membrane in a Chinese Hamster Ovary Cell Mutant Defective in UDP-xylose Synthase *

Hans Bakker; Takuji Oka; Angel Ashikov; Ajit Yadav; Monika Berger; Nadia A. Rana; Xiaomei Bai; Yoshifumi Jigami; Robert S. Haltiwanger; Jeffrey D. Esko; Rita Gerardy-Schahn

In mammals, xylose is found as the first sugar residue of the tetrasaccharide GlcAβ1-3Galβ1-3Galβ1-4Xylβ1-O-Ser, initiating the formation of the glycosaminoglycans heparin/heparan sulfate and chondroitin/dermatan sulfate. It is also found in the trisaccharide Xylα1-3Xylα1-3Glcβ1-O-Ser on epidermal growth factor repeats of proteins, such as Notch. UDP-xylose synthase (UXS), which catalyzes the formation of the UDP-xylose substrate for the different xylosyltransferases through decarboxylation of UDP-glucuronic acid, resides in the endoplasmic reticulum and/or Golgi lumen. Since xylosylation takes place in these organelles, no obvious requirement exists for membrane transport of UDP-xylose. However, UDP-xylose transport across isolated Golgi membranes has been documented, and we recently succeeded with the cloning of a human UDP-xylose transporter (SLC25B4). Here we provide new evidence for a functional role of UDP-xylose transport by characterization of a new Chinese hamster ovary cell mutant, designated pgsI-208, that lacks UXS activity. The mutant fails to initiate glycosaminoglycan synthesis and is not capable of xylosylating Notch. Complementation was achieved by expression of a cytoplasmic variant of UXS, which proves the existence of a functional Golgi UDP-xylose transporter. A ∼200 fold increase of UDP-glucuronic acid occurred in pgsI-208 cells, demonstrating a lack of UDP-xylose-mediated control of the cytoplasmically localized UDP-glucose dehydrogenase in the mutant. The data presented in this study suggest the bidirectional transport of UDP-xylose across endoplasmic reticulum/Golgi membranes and its role in controlling homeostasis of UDP-glucuronic acid and UDP-xylose production.


PLOS Genetics | 2013

Negative Regulation of Notch Signaling by Xylose

Thomas Lee; Maya K. Sethi; Jessica Leonardi; Nadia A. Rana; Falk F. R. Buettner; Robert S. Haltiwanger; Hans Bakker; Hamed Jafar-Nejad

The Notch signaling pathway controls a large number of processes during animal development and adult homeostasis. One of the conserved post-translational modifications of the Notch receptors is the addition of an O-linked glucose to epidermal growth factor-like (EGF) repeats with a C-X-S-X-(P/A)-C motif by Protein O-glucosyltransferase 1 (POGLUT1; Rumi in Drosophila). Genetic experiments in flies and mice, and in vivo structure-function analysis in flies indicate that O-glucose residues promote Notch signaling. The O-glucose residues on mammalian Notch1 and Notch2 proteins are efficiently extended by the addition of one or two xylose residues through the function of specific mammalian xylosyltransferases. However, the contribution of xylosylation to Notch signaling is not known. Here, we identify the Drosophila enzyme Shams responsible for the addition of xylose to O-glucose on EGF repeats. Surprisingly, loss- and gain-of-function experiments strongly suggest that xylose negatively regulates Notch signaling, opposite to the role played by glucose residues. Mass spectrometric analysis of Drosophila Notch indicates that addition of xylose to O-glucosylated Notch EGF repeats is limited to EGF14–20. A Notch transgene with mutations in the O-glucosylation sites of Notch EGF16–20 recapitulates the shams loss-of-function phenotypes, and suppresses the phenotypes caused by the overexpression of human xylosyltransferases. Antibody staining in animals with decreased Notch xylosylation indicates that xylose residues on EGF16–20 negatively regulate the surface expression of the Notch receptor. Our studies uncover a specific role for xylose in the regulation of the Drosophila Notch signaling, and suggest a previously unrecognized regulatory role for EGF16–20 of Notch.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Rumi functions as both a protein O-glucosyltransferase and a protein O-xylosyltransferase.

Hideyuki Takeuchi; Rodrigo Fernandez-Valdivia; Devin S. Caswell; Aleksandra Nita-Lazar; Nadia A. Rana; Thomas P. Garner; Thomas K. Weldeghiorghis; Megan A. Macnaughtan; Hamed Jafar-Nejad; Robert S. Haltiwanger

Mutations in rumi result in a temperature-sensitive loss of Notch signaling in Drosophila. Drosophila Rumi is a soluble, endoplasmic reticulum-retained protein with a CAP10 domain that functions as a protein O-glucosyltransferase. In human and mouse genomes, three potential Rumi homologues exist: one with a high degree of identity to Drosophila Rumi (52%), and two others with lower degrees of identity but including a CAP10 domain (KDELC1 and KDELC2). Here we show that both mouse and human Rumi, but not KDELC1 or KDELC2, catalyze transfer of glucose from UDP-glucose to an EGF repeat from human factor VII. Similarly, human Rumi, but not KDELC1 or KDELC2, rescues the Notch phenotypes in Drosophila rumi clones. During characterization of the Rumi enzymes, we noted that, in addition to protein O-glucosyltransferase activity, both mammalian and Drosophila Rumi also showed significant protein O-xylosyltransferase activity. Rumi transfers Xyl or glucose to serine 52 in the O-glucose consensus sequence () of factor VII EGF repeat. Surprisingly, the second serine (S53) facilitates transfer of Xyl, but not glucose, to the EGF repeat by Rumi. EGF16 of mouse Notch2, which has a diserine motif in the consensus sequence (), is also modified with either O-Xyl or O-glucose glycans in cells. Mutation of the second serine (S590A) causes a loss of O-Xyl but not O-glucose at this site. Altogether, our data establish dual substrate specificity for the glycosyltransferase Rumi and provide evidence that amino acid sequences of the recipient EGF repeat significantly influence which donor substrate (UDP-glucose or UDP-Xyl) is used.


PLOS ONE | 2014

O-fucosylation of the notch ligand mDLL1 by POFUT1 is dispensable for ligand function.

Julia Müller; Nadia A. Rana; Katrin Serth; Shinako Kakuda; Robert S. Haltiwanger; Achim Gossler

Fucosylation of Epidermal Growth Factor-like (EGF) repeats by protein O-fucosyltransferase 1 (POFUT1 in vertebrates, OFUT1 in Drosophila) is pivotal for NOTCH function. In Drosophila OFUT1 also acts as chaperone for Notch independent from its enzymatic activity. NOTCH ligands are also substrates for POFUT1, but in Drosophila OFUT1 is not essential for ligand function. In vertebrates the significance of POFUT1 for ligand function and subcellular localization is unclear. Here, we analyze the importance of O-fucosylation and POFUT1 for the mouse NOTCH ligand Delta-like 1 (DLL1). We show by mass spectral glycoproteomic analyses that DLL1 is O-fucosylated at the consensus motif C2XXXX(S/T)C3 (where C2 and C3 are the second and third conserved cysteines within the EGF repeats) found in EGF repeats 3, 4, 7 and 8. A putative site with only three amino acids between the second cysteine and the hydroxy amino acid within EGF repeat 2 is not modified. DLL1 proteins with mutated O-fucosylation sites reach the cell surface and accumulate intracellularly. Likewise, in presomitic mesoderm cells of POFUT1 deficient embryos DLL1 is present on the cell surface, and in mouse embryonic fibroblasts lacking POFUT1 the same relative amount of overexpressed wild type DLL1 reaches the cell surface as in wild type embryonic fibroblasts. DLL1 expressed in POFUT1 mutant cells can activate NOTCH, indicating that POFUT1 is not required for DLL1 function as a Notch ligand.


Journal of Biological Chemistry | 2016

Mapping sites of O-glycosylation and fringe elongation on Drosophila Notch

Beth M. Harvey; Nadia A. Rana; Hillary Moss; Jessica Leonardi; Hamed Jafar-Nejad; Robert S. Haltiwanger

Glycosylation of the Notch receptor is essential for its activity and serves as an important modulator of signaling. Three major forms of O-glycosylation are predicted to occur at consensus sites within the epidermal growth factor-like repeats in the extracellular domain of the receptor: O-fucosylation, O-glucosylation, and O-GlcNAcylation. We have performed comprehensive mass spectral analyses of these three types of O-glycosylation on Drosophila Notch produced in S2 cells and identified peptides containing all 22 predicted O-fucose sites, all 18 predicted O-glucose sites, and all 18 putative O-GlcNAc sites. Using semiquantitative mass spectral methods, we have evaluated the occupancy and relative amounts of glycans at each site. The majority of the O-fucose sites were modified to high stoichiometries. Upon expression of the β3-N-acetylglucosaminyltransferase Fringe with Notch, we observed varying degrees of elongation beyond O-fucose monosaccharide, indicating that Fringe preferentially modifies certain sites more than others. Rumi modified O-glucose sites to high stoichiometries, although elongation of the O-glucose was site-specific. Although the current putative consensus sequence for O-GlcNAcylation predicts 18 O-GlcNAc sites on Notch, we only observed apparent O-GlcNAc modification at five sites. In addition, we performed mass spectral analysis on endogenous Notch purified from Drosophila embryos and found that the glycosylation states were similar to those found on Notch from S2 cells. These data provide foundational information for future studies investigating the mechanisms of how O-glycosylation regulates Notch activity.

Collaboration


Dive into the Nadia A. Rana's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hamed Jafar-Nejad

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hugo J. Bellen

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jessica Leonardi

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans Bakker

Hannover Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge