Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nadia Aubin-Horth is active.

Publication


Featured researches published by Nadia Aubin-Horth.


Biological Reviews | 2007

A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation

C. Garcia de Leaniz; I. A. Fleming; S. Einum; Eric Verspoor; William C. Jordan; Sofia Consuegra; Nadia Aubin-Horth; D. Lajus; B. H. Letcher; A. F. Youngson; J. H. Webb; Leif Asbjørn Vøllestad; B. Villanueva; A. Ferguson; Thomas P. Quinn

Here we critically review the scale and extent of adaptive genetic variation in Atlantic salmon (Salmo salar L.), an important model system in evolutionary and conservation biology that provides fundamental insights into population persistence, adaptive response and the effects of anthropogenic change. We consider the process of adaptation as the end product of natural selection, one that can best be viewed as the degree of matching between phenotype and environment. We recognise three potential sources of adaptive variation: heritable variation in phenotypic traits related to fitness, variation at the molecular level in genes influenced by selection, and variation in the way genes interact with the environment to produce phenotypes of varying plasticity. Of all phenotypic traits examined, variation in body size (or in correlated characters such as growth rates, age of seaward migration or age at sexual maturity) generally shows the highest heritability, as well as a strong effect on fitness. Thus, body size in Atlantic salmon tends to be positively correlated with freshwater and marine survival, as well as with fecundity, egg size, reproductive success, and offspring survival. By contrast, the fitness implications of variation in behavioural traits such as aggression, sheltering behaviour, or timing of migration are largely unkown. The adaptive significance of molecular variation in salmonids is also scant and largely circumstantial, despite extensive molecular screening on these species. Adaptive variation can result in local adaptations (LA) when, among other necessary conditions, populations live in patchy environments, exchange few or no migrants, and are subjected to differential selective pressures. Evidence for LA in Atlantic salmon is indirect and comes mostly from ecological correlates in fitness‐related traits, the failure of many translocations, the poor performance of domesticated stocks, results of a few common‐garden experiments (where different populations were raised in a common environment in an attempt to dissociate heritable from environmentally induced phenotypic variation), and the pattern of inherited resistance to some parasites and diseases. Genotype × environment interactions occurr for many fitness traits, suggesting that LA might be important. However, the scale and extent of adaptive variation remains poorly understood and probably varies, depending on habitat heterogeneity, environmental stability and the relative roles of selection and drift. As maladaptation often results from phenotype‐environment mismatch, we argue that acting as if populations are not locally adapted carries a much greater risk of mismanagement than acting under the assumption for local adaptations when there are none. As such, an evolutionary approach to salmon conservation is required, aimed at maintaining the conditions necessary for natural selection to operate most efficiently and unhindered. This may require minimising alterations to native genotypes and habitats to which populations have likely become adapted, but also allowing for population size to reach or extend beyond carrying capacity to encourage competition and other sources of natural mortality.


Molecular Ecology | 2009

Genomic reaction norms: using integrative biology to understand molecular mechanisms of phenotypic plasticity

Nadia Aubin-Horth; Susan C. P. Renn

Phenotypic plasticity is the development of different phenotypes from a single genotype, depending on the environment. Such plasticity is a pervasive feature of life, is observed for various traits and is often argued to be the result of natural selection. A thorough study of phenotypic plasticity should thus include an ecological and an evolutionary perspective. Recent advances in large‐scale gene expression technology make it possible to also study plasticity from a molecular perspective, and the addition of these data will help answer long‐standing questions about this widespread phenomenon. In this review, we present examples of integrative studies that illustrate the molecular and cellular mechanisms underlying plastic traits, and show how new techniques will grow in importance in the study of these plastic molecular processes. These techniques include: (i) heterologous hybridization to DNA microarrays; (ii) next generation sequencing technologies applied to transcriptomics; (iii) techniques for studying the function of noncoding small RNAs; and (iv) proteomic tools. We also present recent studies on genetic model systems that uncover how environmental cues triggering different plastic responses are sensed and integrated by the organism. Finally, we describe recent work on changes in gene expression in response to an environmental cue that persist after the cue is removed. Such long‐term responses are made possible by epigenetic molecular mechanisms, including DNA methylation. The results of these current studies help us outline future avenues for the study of plasticity.


BMC Genomics | 2004

Biologically meaningful expression profiling across species using heterologous hybridization to a cDNA microarray

Susan C. P. Renn; Nadia Aubin-Horth; Hans A. Hofmann

BackgroundUnravelling the path from genotype to phenotype, as it is influenced by an organisms environment, is one of the central goals in biology. Gene expression profiling by means of microarrays has become very prominent in this endeavour, although resources exist only for relatively few model systems. As genomics has matured into a comparative research program, expression profiling now also provides a powerful tool for non-traditional model systems to elucidate the molecular basis of complex traits.ResultsHere we present a microarray constructed with ~4500 features, derived from a brain-specific cDNA library for the African cichlid fish Astatotilapia burtoni (Perciformes). Heterologous hybridization, targeting RNA to an array constructed for a different species, is used for eight different fish species. We quantified the concordance in gene expression profiles across these species (number of genes and fold-changes). Although most robust when target RNA is derived from closely related species (<10 MA divergence time), our results showed consistent profiles for other closely related taxa (~65 MA divergence time) and, to a lesser extent, even very distantly related species (>200 MA divergence time).ConclusionThis strategy overcomes some of the restrictions imposed on model systems that are of importance for evolutionary and ecological studies, but for which only limited sequence information is available. Our work validates the use of expression profiling for functional genomics within a comparative framework and provides a foundation for the molecular and cellular analysis of complex traits in a wide range of organisms.


Proceedings of the Royal Society of London B: Biological Sciences | 2005

Alternative life histories shape brain gene expression profiles in males of the same population

Nadia Aubin-Horth; Christian R. Landry; Benjamin H. Letcher; Hans A. Hofmann

Atlantic salmon (Salmo salar) undergo spectacular marine migrations before homing to spawn in natal rivers. However, males that grow fastest early in life can adopt an alternative ‘sneaker’ tactic by maturing earlier at greatly reduced size without leaving freshwater. While the ultimate evolutionary causes have been well studied, virtually nothing is known about the molecular bases of this developmental plasticity. We investigate the nature and extent of coordinated molecular changes that accompany such a fundamental transformation by comparing the brain transcription profiles of wild mature sneaker males to age-matched immature males (future large anadromous males) and immature females. Of the ca. 3000 genes surveyed, 15% are differentially expressed in the brains of the two male types. These genes are involved in a wide range of processes, including growth, reproduction and neural plasticity. Interestingly, despite the potential for wide variation in gene expression profiles among individuals sampled in nature, consistent patterns of gene expression were found for individuals of the same reproductive tactic. Notably, gene expression patterns in immature males were different both from immature females and sneakers, indicating that delayed maturation and sea migration by immature males, the ‘default’ life cycle, may actually result from an active inhibition of development into a sneaker.


The Journal of Experimental Biology | 2008

Fish and chips: functional genomics of social plasticity in an African cichlid fish

Susan C. P. Renn; Nadia Aubin-Horth; Hans A. Hofmann

SUMMARY Behavior and physiology are regulated by both environment and social context. A central goal in the study of the social control of behavior is to determine the underlying physiological, cellular and molecular mechanisms in the brain. The African cichlid fish Astatotilapia burtoni has long been used as a model system to study how social interactions regulate neural and behavioral plasticity. In this species, males are either socially dominant and reproductively active or subordinate and reproductively suppressed. This phenotypic difference is reversible. Using an integrative approach that combines quantitative behavioral measurements, functional genomics and bioinformatic analyses, we examine neural gene expression in dominant and subordinate males as well as in brooding females. We confirm the role of numerous candidate genes that are part of neuroendocrine pathways and show that specific co-regulated gene sets (modules), as well as specific functional gene ontology categories, are significantly associated with either dominance or reproductive state. Finally, even though the dominant and subordinate phenotypes are robustly defined, we find a surprisingly high degree of individual variation in the transcript levels of the very genes that are differentially regulated between these phenotypes. The results of the present study demonstrate the molecular complexity in the brain underlying social behavior, identify novel targets for future studies, validate many candidate genes and exploit individual variation in order to gain biological insights.


Molecular Ecology | 2007

Masculinized dominant females in a cooperatively breeding species

Nadia Aubin-Horth; Julie K. Desjardins; Yehoda M. Martei; Sigal Balshine; Hans A. Hofmann

The molecular mechanisms underlying complex social behaviours such as dominance are largely unknown. Studying the cooperatively breeding African cichlid Neolamprologus pulcher, we show that dominant females were similar to dominant males in dominance behaviour, high testosterone levels and brain arginine vasotocin expression (a neuropeptide involved in vertebrate territorial, reproductive and social behaviours) compared to subordinate helpers, but had lower levels of 11‐ketotestosterone than males. Furthermore, brain gene expression profiles of dominant females were most similar to those of the males (independent of social rank). Dominant breeder females are masculinized at the molecular and hormonal level while being at the same time reproductively competent, suggesting a modular organization of molecular and endocrine functions, allowing for sex‐specific regulation.


Evolution | 2004

INFLUENCE OF INDIVIDUAL BODY SIZE AND VARIABLE THRESHOLDS ON THE INCIDENCE OF A SNEAKER MALE REPRODUCTIVE TACTIC IN ATLANTIC SALMON

Nadia Aubin-Horth; Julian J. Dodson

Abstract In the conditional strategy model, divergence in reproductive phenotypes depends on whether the individuals condition is above or below a genetically determined threshold. The relative contribution of the genetic and environmental components that lead to the expression of a reproductive tactic by an individual is not well understood. In the present field study, we determined when condition diverged between males that develop the mature parr phenotype and those that do not in Atlantic salmon (Salmo salar). We also investigated the uniformity of the threshold value in the population. We sampled mature parr and immature males at age one, of the same population at six different sites for four consecutive years. Our study provides an example of the interaction of genotype and environment on the expression of a reproductive tactic. Size was significantly greater for future mature parr than for future immature males as early as 20 days after hatching (emergence), suggesting that there may be a parental effect component in the tactic adopted, since no exogenous feeding takes place before this time. Size advantage at emergence was maintained through the next spring at age one to different degrees depending on the year, thus suggesting the presence of an environmental component of tactic expression. Our results support the contention that within the conditional strategy, the environment faced by a male and his condition at the moment of reproduction consistently predicts neither the environment faced by his offspring nor the fitness they will obtain by expressing the same tactic as their father. Furthermore, higher mean size at a site did not always translate into a higher proportion of mature parr, therefore supporting the hypothesis that thresholds vary across habitats within the same population.


Molecular Ecology | 2014

Gene expression plasticity evolves in response to colonization of freshwater lakes in threespine stickleback.

Matthew R. J. Morris; Romain Richard; Erica H. Leder; Rowan D. H. Barrett; Nadia Aubin-Horth; Sean M. Rogers

Phenotypic plasticity is predicted to facilitate individual survival and/or evolve in response to novel environments. Plasticity that facilitates survival should both permit colonization and act as a buffer against further evolution, with contemporary and derived forms predicted to be similarly plastic for a suite of traits. On the other hand, given the importance of plasticity in maintaining internal homeostasis, derived populations that encounter greater environmental heterogeneity should evolve greater plasticity. We tested the evolutionary significance of phenotypic plasticity in coastal British Columbian postglacial populations of threespine stickleback (Gasterosteus aculeatus) that evolved under greater seasonal extremes in temperature after invading freshwater lakes from the sea. Two ancestral (contemporary marine) and two derived (contemporary freshwater) populations of stickleback were raised near their thermal tolerance extremes, 7 and 22 °C. Gene expression plasticity was estimated for more than 14 000 genes. Over five thousand genes were similarly plastic in marine and freshwater stickleback, but freshwater populations exhibited significantly more genes with plastic expression than marine populations. Furthermore, several of the loci shown to exhibit gene expression plasticity have been previously implicated in the adaptive evolution of freshwater populations, including a gene involved in mitochondrial regulation (PPARAa). Collectively, these data provide molecular evidence that highlights the importance of plasticity in colonization and adaptation to new environments.


Trends in Ecology and Evolution | 2012

What is needed for next-generation ecological and evolutionary genomics?

Scott A. Pavey; Louis Bernatchez; Nadia Aubin-Horth; Christian R. Landry

Ecological and evolutionary genomics (EEG) aims to link gene functions and genomic features to phenotypes and ecological factors. Although the rapid development of technologies allows central questions to be addressed at an unprecedented level of molecular detail, they do not alleviate one of the major challenges of EEG, which is that a large fraction of genes remains without any annotation. Here, we propose two solutions to this challenge. The first solution is in the form of a database that regroups associations between genes, organismal attributes and abiotic and biotic conditions. This database would result in an ecological annotation of genes by allowing cross-referencing across studies and taxa. Our second solution is to use new functional techniques to characterize genes implicated in the response to ecological challenges.


BMC Genomics | 2005

Large-scale genetic variation of the symbiosis-required megaplasmid pSymA revealed by comparative genomic analysis of Sinorhizobium meliloti natural strains

Elisa Giuntini; Alessio Mengoni; Carlotta De Filippo; Duccio Cavalieri; Nadia Aubin-Horth; Christian R. Landry; Anke Becker; Marco Bazzicalupo

BackgroundSinorhizobium meliloti is a soil bacterium that forms nitrogen-fixing nodules on the roots of leguminous plants such as alfalfa (Medicago sativa). This species occupies different ecological niches, being present as a free-living soil bacterium and as a symbiont of plant root nodules. The genome of the type strain Rm 1021 contains one chromosome and two megaplasmids for a total genome size of 6 Mb. We applied comparative genomic hybridisation (CGH) on an oligonucleotide microarrays to estimate genetic variation at the genomic level in four natural strains, two isolated from Italian agricultural soil and two from desert soil in the Aral Sea region.ResultsFrom 4.6 to 5.7 percent of the genes showed a pattern of hybridisation concordant with deletion, nucleotide divergence or ORF duplication when compared to the type strain Rm 1021. A large number of these polymorphisms were confirmed by sequencing and Southern blot. A statistically significant fraction of these variable genes was found on the pSymA megaplasmid and grouped in clusters. These variable genes were found to be mainly transposases or genes with unknown function.ConclusionThe obtained results allow to conclude that the symbiosis-required megaplasmid pSymA can be considered the major hot-spot for intra-specific differentiation in S. meliloti.

Collaboration


Dive into the Nadia Aubin-Horth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans A. Hofmann

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iain Barber

University of Leicester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge