Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nadia Barizzone is active.

Publication


Featured researches published by Nadia Barizzone.


American Journal of Human Genetics | 2013

Network-Based Multiple Sclerosis Pathway Analysis with GWAS Data from 15,000 Cases and 30,000 Controls

Sergio E. Baranzini; Pouya Khankhanian; Nikolaos A. Patsopoulos; Michael Li; Jim Stankovich; Chris Cotsapas; Helle Bach Søndergaard; Maria Ban; Nadia Barizzone; Laura Bergamaschi; David R. Booth; Dorothea Buck; Paola Cavalla; Elisabeth G. Celius; Manuel Comabella; Giancarlo Comi; Alastair Compston; Isabelle Cournu-Rebeix; Sandra D’Alfonso; Vincent Damotte; Lennox Din; Bénédicte Dubois; Irina Elovaara; Federica Esposito; Bertrand Fontaine; Andre Franke; An Goris; Pierre-Antoine Gourraud; Christiane Graetz; Franca Rosa Guerini

Multiple sclerosis (MS) is an inflammatory CNS disease with a substantial genetic component, originally mapped to only the human leukocyte antigen (HLA) region. In the last 5 years, a total of seven genome-wide association studies and one meta-analysis successfully identified 57 non-HLA susceptibility loci. Here, we merged nominal statistical evidence of association and physical evidence of interaction to conduct a protein-interaction-network-based pathway analysis (PINBPA) on two large genetic MS studies comprising a total of 15,317 cases and 29,529 controls. The distribution of nominally significant loci at the gene level matched the patterns of extended linkage disequilibrium in regions of interest. We found that products of genome-wide significantly associated genes are more likely to interact physically and belong to the same or related pathways. We next searched for subnetworks (modules) of genes (and their encoded proteins) enriched with nominally associated loci within each study and identified those modules in common between the two studies. We demonstrate that these modules are more likely to contain genes with bona fide susceptibility variants and, in addition, identify several high-confidence candidates (including BCL10, CD48, REL, TRAF3, and TEC). PINBPA is a powerful approach to gaining further insights into the biology of associated genes and to prioritizing candidates for subsequent genetic studies of complex traits.


Journal of Clinical Investigation | 2009

Kallikrein genes are associated with lupus and glomerular basement membrane-specific antibody-induced nephritis in mice and humans.

Kui Liu; Quan Zhen Li; Angelica M. Delgado-Vega; Anna-Karin Abelson; Elena Sánchez; Jennifer A. Kelly; Li Li; Yang Liu; Jinchun Zhou; Mei Yan; Qiu Ye; Shenxi Liu; Chun Xie; Xin J. Zhou; Sharon A. Chung; Bernardo A. Pons-Estel; Torsten Witte; Enrique de Ramón; Sang-Cheol Bae; Nadia Barizzone; Gian Domenico Sebastiani; Joan T. Merrill; Peter K. Gregersen; Gary G. Gilkeson; Robert P. Kimberly; Timothy J. Vyse; Il Kim; Sandra D’Alfonso; Javier Martin; John B. Harley

Immune-mediated nephritis contributes to disease in systemic lupus erythematosus, Goodpasture syndrome (caused by antibodies specific for glomerular basement membrane [anti-GBM antibodies]), and spontaneous lupus nephritis. Inbred mouse strains differ in susceptibility to anti-GBM antibody-induced and spontaneous lupus nephritis. This study sought to clarify the genetic and molecular factors that maybe responsible for enhanced immune-mediated renal disease in these models. When the kidneys of 3 mouse strains sensitive to anti-GBM antibody-induced nephritis were compared with those of 2 control strains using microarray analysis, one-fifth of the underexpressed genes belonged to the kallikrein gene family,which encodes serine esterases. Mouse strains that upregulated renal and urinary kallikreins exhibited less evidence of disease. Antagonizing the kallikrein pathway augmented disease, while agonists dampened the severity of anti-GBM antibody-induced nephritis. In addition, nephritis-sensitive mouse strains had kallikrein haplotypes that were distinct from those of control strains, including several regulatory polymorphisms,some of which were associated with functional consequences. Indeed, increased susceptibility to anti-GBM antibody-induced nephritis and spontaneous lupus nephritis was achieved by breeding mice with a genetic interval harboring the kallikrein genes onto a disease-resistant background. Finally, both human SLE and spontaneous lupus nephritis were found to be associated with kallikrein genes, particularly KLK1 and the KLK3 promoter, when DNA SNPs from independent cohorts of SLE patients and controls were compared. Collectively, these studies suggest that kallikreins are protective disease-associated genes in anti-GBM antibody-induced nephritis and lupus.


Genes and Immunity | 2007

Opposed independent effects and epistasis in the complex association of IRF5 to SLE

I. Ferreiro-Neira; Manuel Calaza; Elisa Alonso-Perez; Maurizio Marchini; R. Scorza; Gian Domenico Sebastiani; F.J. Blanco; Ignacio Rego; Rudolf Pullmann; Cornelis Kallenberg; Marc Bijl; Fotini N. Skopouli; M. Mavromati; S. Migliaresi; Nadia Barizzone; S Ruzickova; C. Dostal; R. E. Schmidt; Torsten Witte; Chryssa Papasteriades; I. Kappou-Rigatou; Emoke Endreffy; A. Kovacs; Josep Ordi-Ros; Eva Balada; Patricia Carreira; Juan J. Gomez-Reino; Antonio Gonzalez

Genetic variation in the interferon regulatory factor 5 (IRF5) gene affects systemic lupus erythematosus (SLE) susceptibility. However, association is complex and incompletely defined. We obtained fourteen European sample collections with a total of 1383 SLE patients and 1614 controls to better define the role of the different IRF5 variants. Eleven polymorphisms were studied, including nine tag single nucleotide polymorphisms (SNPs) and two extra functional polymorphisms. Two tag SNPs showed independent and opposed associations: susceptibility (rs10488631, P<10−17) and protection (rs729302, P<10−6). Haplotype analyses showed that the susceptibility haplotype, identified by the minor allele of rs10488631, can be due to epistasis between three IRF5 functional polymorphisms. These polymorphisms determine increased mRNA expression, a splice variant with a different exon 1 and a longer proline-rich region in exon 6. This result is striking as none of the three polymorphisms had an independent effect on their own. Protection was independent of these polymorphisms and seemed to reside in the 5′ side of the gene. In conclusion, our results help to understand the role of the IRF5 locus in SLE susceptibility by clearly separating protection from susceptibility as caused by independent polymorphisms. In addition, we have found evidence for epistasis between known functional polymorphisms for the susceptibility effect.


International Journal of Molecular Sciences | 2011

Genetic Association and Altered Gene Expression of Mir-155 in Multiple Sclerosis Patients

Elvezia Maria Paraboschi; Giulia Soldà; Donato Gemmati; Elisa Orioli; Giulia Zeri; Maria Donata Benedetti; Alessandro Salviati; Nadia Barizzone; Maurizio Leone; Stefano Duga; Rosanna Asselta

Multiple sclerosis (MS) is a complex autoimmune disease of the central nervous system characterized by chronic inflammation, demyelination, and axonal damage. As microRNA (miRNA)-dependent alterations in gene expression in hematopoietic cells are critical for mounting an appropriate immune response, miRNA deregulation may result in defects in immune tolerance. In this frame, we sought to explore the possible involvement of miRNAs in MS pathogenesis by monitoring the differential expression of 22 immunity-related miRNAs in peripheral blood mononuclear cells of MS patients and healthy controls, by using a microbead-based technology. Three miRNAs resulted >2 folds up-regulated in MS vs controls, whereas none resulted down-regulated. Interestingly, the most up-regulated miRNA (mir-155; fold change = 3.30; P = 0.013) was previously reported to be up-regulated also in MS brain lesions. Mir-155 up-regulation was confirmed by qPCR experiments. The role of mir-155 in MS susceptibility was also investigated by genotyping four single nucleotide polymorphisms (SNPs) mapping in the mir-155 genomic region. A haplotype of three SNPs, corresponding to a 12-kb region encompassing the last exon of BIC (the B-cell Integration Cluster non-coding RNA, from which mir-155 is processed), resulted associated with the disease status (P = 0.035; OR = 1.36, 95% CI = 1.05–1.77), suggesting that this locus strongly deserves further investigations.


The New England Journal of Medicine | 2017

Overexpression of the Cytokine BAFF and Autoimmunity Risk

Maristella Steri; Valeria Orrù; M. Laura Idda; Maristella Pitzalis; Mauro Pala; Ilenia Zara; Carlo Sidore; Valeria Faà; Matteo Floris; Manila Deiana; Isadora Asunis; Eleonora Porcu; Antonella Mulas; Maria Grazia Piras; Monia Lobina; Sandra Lai; Mara Marongiu; Valentina Serra; Michele Marongiu; Gabriella Sole; Fabio Busonero; Andrea Maschio; Roberto Cusano; Gianmauro Cuccuru; Francesca Deidda; Fausto Pier'Angelo Poddie; Gabriele Farina; Mariano Dei; Francesca Virdis; Stefania Olla

BACKGROUND Genomewide association studies of autoimmune diseases have mapped hundreds of susceptibility regions in the genome. However, only for a few association signals has the causal gene been identified, and for even fewer have the causal variant and underlying mechanism been defined. Coincident associations of DNA variants affecting both the risk of autoimmune disease and quantitative immune variables provide an informative route to explore disease mechanisms and drug‐targetable pathways. METHODS Using case–control samples from Sardinia, Italy, we performed a genomewide association study in multiple sclerosis followed by TNFSF13B locus–specific association testing in systemic lupus erythematosus (SLE). Extensive phenotyping of quantitative immune variables, sequence‐based fine mapping, cross‐population and cross‐phenotype analyses, and gene‐expression studies were used to identify the causal variant and elucidate its mechanism of action. Signatures of positive selection were also investigated. RESULTS A variant in TNFSF13B, encoding the cytokine and drug target B‐cell activating factor (BAFF), was associated with multiple sclerosis as well as SLE. The disease‐risk allele was also associated with up‐regulated humoral immunity through increased levels of soluble BAFF, B lymphocytes, and immunoglobulins. The causal variant was identified: an insertion–deletion variant, GCTGT→A (in which A is the risk allele), yielded a shorter transcript that escaped microRNA inhibition and increased production of soluble BAFF, which in turn up‐regulated humoral immunity. Population genetic signatures indicated that this autoimmunity variant has been evolutionarily advantageous, most likely by augmenting resistance to malaria. CONCLUSIONS A TNFSF13B variant was associated with multiple sclerosis and SLE, and its effects were clarified at the population, cellular, and molecular levels. (Funded by the Italian Foundation for Multiple Sclerosis and others.)


Brain Behavior and Immunity | 2011

Vitamin D receptor (VDR) gene SNPs influence VDR expression and modulate protection from multiple sclerosis in HLA-DRB1*15-positive individuals.

Cristina Agliardi; Franca Rosa Guerini; Marina Saresella; Domenico Caputo; Maurizio Leone; Milena Zanzottera; Elisabetta Bolognesi; Ivana Marventano; Nadia Barizzone; Maria E. Fasano; Nasser M. Al-Daghri; Mario Clerici

Multiple sclerosis (MS) is an autoimmune disease with a multifactorial etiology. The HLA-DRB1*15 allele, is the main genetic risk factor for MS in Caucasians; recent findings showed that the transcription of this molecule is regulated by the vitamin D/vitamin D receptor (VDR) complex. We analyzed SNPs within the VDR gene in association with the HLA-DRB1 locus in 641 MS patients diagnosed according to McDonald criteria and 558 age- and sex-matched healthy controls, to verify possible correlations between the vitamin D/VDR complex, HLA-DRB1, and susceptibility to MS. Results confirmed that HLA-DRB1*15 is a strong predisposing allele (p<1×10(-7); OR: 3.04; 95% CI: 2.02-4.60) for MS. Cosegregation analyses of VDR SNPs with HLA-DRB1*15 indicated a reduction of risk for MS given by the presence of the -DRB1*15-rs731236 T VDR haplotype (p=9.5×10(-5); OR: 2.52; 95% CI: 1.56-4.06) and, conversely, an augmented risk for disease associated with the -DRB1*15-rs731236 C VDR haplotype. Analyses performed on HLA-DRB1*15-positive MS patients and HC alone confirmed the protective role of rs731236 TT VDR genotype (p(y)=0.004; OR: 0.53; 95% CI: 0.33-0.83); notably, FACS, PCR, and confocal microscopy analyses showed that rs731236 TT genotype is associated with an augmented VDR expression in MBP-stimulated PBMC from patients. In conclusion, rs731236 TT VDR genotype modulates VDR expression and confers protection against MS in HLA-DRB1*15-positive individuals. Results herein offer a model justifying the interaction between the major genetic (HLA-DRB*15) and environmental (vitamin D) factors associated with MS onset.


Genes and Immunity | 2010

HLA-class I markers and multiple sclerosis susceptibility in the Italian population.

Laura Bergamaschi; Maurizio Leone; M E Fasano; Franca Rosa Guerini; D Ferrante; Elisabetta Bolognesi; Nadia Barizzone; L Corrado; Paola Naldi; Cristina Agliardi; E Dametto; Marco Salvetti; A Visconti; Daniela Galimberti; Elio Scarpini; M Vercellino; R Bergamaschi; Francesco Monaco; Domenico Caputo; Patricia Momigliano-Richiardi; Sandra D'Alfonso

Previous studies reported an association with multiple sclerosis (MS) of distinct HLA-class I markers, namely HLA-A*02, HLA-Cw*05 and MOG-142L. In this work, we tested the association with MS of A*02 and Cw*05 in 1273 Italian MS patients and 1075 matched controls, which were previously analyzed for MOG-142, and explored the relationship among these three markers in modulating MS risk. HLA-A*02 conferred a statistically robust MS protection (odds ratio, OR=0.61; 95% confidence intervals, CI=0.51–0.72, P<10−9), which was independent of DRB1*15 and of any other DRB1* allele and remained similar after accounting for the other two analyzed class I markers. Conversely, the protective effect we previously observed for MOG-142L was secondary to its linkage disequilibrium with A*02. Cw*05 was not associated considering the whole sample, but its presence significantly enhanced the protection in the HLA-A*02-positive group, independently of DRB1: the OR conferred by A*02 in Cw*05-positive individuals (0.22, 95% CI=0.13–0.38) was significantly lower than in Cw*05-negative individuals (0.69, 95% CI=0.58–0.83) with a significant (P=4.94 × 10−5) multiplicative interaction between the two markers. In the absence of A*02, Cw*05 behaved as a risk factor, particularly in combination with DRB1*03 (OR=3.89, P=0.0006), indicating that Cw*05 might be a marker of protective or risk haplotypes, respectively.


Genes and Immunity | 2002

Association tests with systemic lupus erythematosus (SLE) of IL10 markers indicate a direct involvement of a CA repeat in the 5′ regulatory region

S D' Alfonso; Mara Giordano; M Mellai; M Lanceni; Nadia Barizzone; Maurizio Marchini; Raffaella Scorza; Maria Giovanna Danieli; M Cappelli; P Rovere; M G Sabbadini; Patricia Momigliano-Richiardi

Many lines of evidence suggest that IL10 is a strong candidate gene for systemic lupus erythematosus (SLE) susceptibility. In our previously reported study an allele (IL10.G-140bp) of the microsatellite IL10.G located at position −1100 was significantly increased in Italian SLE patients in comparison with controls. Starting from this observation, we tested if sequence variations in the vicinity of IL10.G were more strongly associated with SLE. We performed a comprehensive association study including 26 SNPs (of which four were newly identified in the present study by DHPLC analysis) spanning 8.5 Kb of the 5′ flanking and the transcribed region of the IL10 gene. The association study was performed by the DNA pool method on an extended panel of Italian patients (205) and controls (631). Haplotypic associations were studied by individual typing of seven selected markers surrounding IL10.G. Gene, genotype and haplotype frequencies were not significantly different in patients and controls. Thus the IL10.G microsatellite remains to date the only IL10 marker associated with SLE in our population. A meta-analysis of all published results indicates a possible direct role of the IL10.G repeat number in SLE susceptibiliy.


Genes and Immunity | 2008

Variations of the perforin gene in patients with multiple sclerosis

Giuseppe Cappellano; Elisabetta Orilieri; Cristoforo Comi; Annalisa Chiocchetti; S Bocca; Elena Boggio; I S Bernardone; Angela Cometa; Rita Clementi; Nadia Barizzone; Sandra D'Alfonso; L Corrado; Daniela Galimberti; Elio Scarpini; F R Guerini; D Caputo; D Paolicelli; Maria Trojano; L Figà-Talamanca; Marco Salvetti; Franco Perla; Maurizio Leone; Francesco Monaco; Umberto Dianzani

Perforin is involved in cell-mediated cytotoxicity and mutations of its gene (PRF1) cause familial hemophagocytic lymphohistiocytosis (FLH2). PRF1 sequencing in 190 patients with multiple sclerosis and 268 controls detected two FLH2-associated variations (A91V, N252S) in both groups and six novel mutations (C999T, G1065A, G1428A, A1620G, G719A, C1069T) in patients. All together, carriers of these variations were more frequent in patients than in controls (phenotype frequency: 17 vs 9%, P=0.0166; odds ratio (OR)=2.06, 95% confidence interval (CI): 1.13–3.77). Although A91V was the most frequent variation and displayed a trend of association with multiple sclerosis (MS) in the first population of patients and controls (frequency of the 91V allele: 0.076 vs 0.043, P=0.044), we used it as a marker to confirm PRF1 involvement in MS and assessed its frequency in a second population of 966 patients and 1520 controls. Frequency of the 91V allele was significantly higher in patients than in controls also in the second population (0.075 vs 0.058%, P=0.019). In the combined cohorts of 1156 patients and 1788 controls, presence of the 91V allele in single or double dose conferred an OR=1.38 (95% CI=1.10–1.74). These data suggest that A91V and possibly other perforin variations indicate susceptibility to MS.


Brain | 2015

Genetic variants are major determinants of CSF antibody levels in multiple sclerosis

An Goris; Ine Pauwels; Marte Wendel Gustavsen; Brechtje van Son; Kelly Hilven; S.D. Bos; Elisabeth G. Celius; Pål Berg-Hansen; Jan Harald Aarseth; Kjell-Morten Myhr; Sandra D'Alfonso; Nadia Barizzone; Maurizio Leone; Filippo Martinelli Boneschi; Melissa Sorosina; G Liberatore; Ingrid Kockum; Tomas Olsson; Jan Hillert; Lars Alfredsson; Sahl Khalid Bedri; Bernhard Hemmer; Dorothea Buck; Achim Berthele; Benjamin Knier; Viola Biberacher; Vincent Van Pesch; Christian Sindic; Annette Bang Oturai; Helle Bach Søndergaard

Immunological hallmarks of multiple sclerosis include the production of antibodies in the central nervous system, expressed as presence of oligoclonal bands and/or an increased immunoglobulin G index-the level of immunoglobulin G in the cerebrospinal fluid compared to serum. However, the underlying differences between oligoclonal band-positive and -negative patients with multiple sclerosis and reasons for variability in immunoglobulin G index are not known. To identify genetic factors influencing the variation in the antibody levels in the cerebrospinal fluid in multiple sclerosis, we have performed a genome-wide association screen in patients collected from nine countries for two traits, presence or absence of oligoclonal bands (n = 3026) and immunoglobulin G index levels (n = 938), followed by a replication in 3891 additional patients. We replicate previously suggested association signals for oligoclonal band status in the major histocompatibility complex region for the rs9271640*A-rs6457617*G haplotype, correlated with HLA-DRB1*1501, and rs34083746*G, correlated with HLA-DQA1*0301 (P comparing two haplotypes = 8.88 × 10(-16)). Furthermore, we identify a novel association signal of rs9807334, near the ELAC1/SMAD4 genes, for oligoclonal band status (P = 8.45 × 10(-7)). The previously reported association of the immunoglobulin heavy chain locus with immunoglobulin G index reaches strong evidence for association in this data set (P = 3.79 × 10(-37)). We identify two novel associations in the major histocompatibility complex region with immunoglobulin G index: the rs9271640*A-rs6457617*G haplotype (P = 1.59 × 10(-22)), shared with oligoclonal band status, and an additional independent effect of rs6457617*G (P = 3.68 × 10(-6)). Variants identified in this study account for up to 2-fold differences in the odds of being oligoclonal band positive and 7.75% of the variation in immunoglobulin G index. Both traits are associated with clinical features of disease such as female gender, age at onset and severity. This is the largest study population so far investigated for the genetic influence on antibody levels in the cerebrospinal fluid in multiple sclerosis, including 6950 patients. We confirm that genetic factors underlie these antibody levels and identify both the major histocompatibility complex and immunoglobulin heavy chain region as major determinants.

Collaboration


Dive into the Nadia Barizzone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandra D'Alfonso

University of Eastern Piedmont

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giancarlo Comi

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Melissa Sorosina

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

An Goris

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maurizio Marchini

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar

Sandra D’Alfonso

University of Eastern Piedmont

View shared research outputs
Researchain Logo
Decentralizing Knowledge