Nadia Bougarne
Ghent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nadia Bougarne.
The EMBO Journal | 2008
Ilse M. Beck; Wim Vanden Berghe; Linda Vermeulen; Nadia Bougarne; Bert Vander Cruyssen; Guy Haegeman; Karolien De Bosscher
Glucocorticoids are widely used anti‐inflammatory and immunomodulatory agents, of which the action mechanism is mainly based on interference of hormone‐activated glucocorticoid receptor (GR) with the activity of transcription factors, such as nuclear factor‐κB (NF‐κB). In addition to the well described interaction‐based mutual repression mechanism between the GR and NF‐κB, additional mechanisms are at play, which help to explain the efficacy of glucocorticoid‐mediated gene repression. In this respect, we found that glucocorticoids counteract the recruitment of activated Mitogen‐ and Stress‐activated protein Kinase‐1 (MSK1) at inflammatory gene promoters resulting in the inhibition of NF‐κB p65 transactivation and of concurrent histone H3 phosphorylation. Additionally, we observed that activated GR can trigger redistribution of nuclear MSK1 to the cytoplasm through a CRM1‐dependent export mechanism, as a result of an interaction between liganded GR and activated MSK1. These findings unveil a novel aspect within the GR‐mediated NF‐κB‐targeting anti‐inflammatory mechanism.
Cancer Letters | 2011
Dagmar García-Rivera; René Delgado; Nadia Bougarne; Guy Haegeman; Wim Vanden Berghe
Vimang is a standardized extract derived from Mango bark (Mangifera Indica L.), commonly used as anti-inflammatory phytomedicine, which has recently been used to complement cancer therapies in cancer patients. We have further investigated potential anti-tumour effects of glucosylxanthone mangiferin and indanone gallic acid, which are both present in Vimang extract. We observed significant anti-tumour effects of both Vimang constituents in the highly aggressive and metastatic breast cancer cell type MDA-MB231. At the molecular level, mangiferin and gallic acid both inhibit classical NFκB activation by IKKα/β kinases, which results in impaired IκB degradation, NFκB translocation and NFκB/DNA binding. In contrast to the xanthone mangiferin, gallic acid further inhibits additional NFκB pathways involved in cancer cell survival and therapy resistance, such as MEK1, JNK1/2, MSK1, and p90RSK. This results in combinatorial inhibition of NFκB activity by gallic acid, which results in potent inhibition of NFκB target genes involved in inflammation, metastasis, anti-apoptosis and angiogenesis, such as IL-6, IL-8, COX2, CXCR4, XIAP, bcl2, VEGF. The cumulative NFκB inhibition by gallic acid, but not mangiferin, is also reflected at the level of cell survival, which reveals significant tumour cytotoxic effects in MDA-MB231 cells. Altogether, we identify gallic acid, besides mangiferin, as an essential anti-cancer component in Vimang extract, which demonstrates multifocal inhibition of NFκB activity in the cancer-inflammation network.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Nadia Bougarne; Réjane Paumelle; Sandrine Caron; Nathalie Hennuyer; Roxane Mansouri; Philippe Gervois; Bart Staels; Guy Haegeman; Karolien De Bosscher
Glucocorticoid receptor α (GRα) and peroxisome proliferator-activated receptor α (PPARα) are transcription factors with clinically important immune-modulating properties. Either receptor can inhibit cytokine gene expression, mainly through interference with nuclear factor κB (NF-κB)-driven gene expression. The present work aimed to investigate a functional cross-talk between PPARα- and GRα-mediated signaling pathways. Simultaneous activation of PPARα and GRα dose-dependently enhances transrepression of NF-κB-driven gene expression and additively represses cytokine production. In sharp contrast and quite unexpectedly, PPARα agonists inhibit the expression of classical glucocorticoid response element (GRE)-driven genes in a PPARα-dependent manner, as demonstrated by experiments using PPARα wild-type and knockout mice. The underlying mechanism for this transcriptional antagonism relies on a PPARα-mediated interference with the recruitment of GRα, and concomitantly of RNA polymerase II, to GRE-driven gene promoters. Finally, the biological relevance of this phenomenon is underscored by the observation that treatment with the PPARα agonist fenofibrate prevents glucocorticoid-induced hyperinsulinemia of mice fed a high-fat diet. Taken together, PPARα negatively interferes with GRE-mediated GRα activity while potentiating its antiinflammatory effects, thus providing a rationale for combination therapy in chronic inflammatory disorders.
Arthritis & Rheumatism | 2009
Valerie Gossye; Dirk Elewaut; Nadia Bougarne; Debby Bracke; Serge Van Calenbergh; Guy Haegeman; Karolien De Bosscher
OBJECTIVEnTo investigate and compare the molecular mechanisms by which 2 glucocorticoid receptor (GR)-activating compounds, dexamethasone (DEX) and Compound A (CpdA), interfere with the NF-kappaB activation pathway in rheumatoid arthritis (RA) synovial cells.nnnMETHODSnQuantitative polymerase chain reaction was performed to detect the tumor necrosis factor alpha (TNFalpha)-induced cytokine gene expression of interleukin-1beta (IL-1beta) and to investigate the effects of DEX and CpdA in RA fibroblast-like synoviocytes (FLS) transfected with small interfering RNA (siRNA) against GR (siGR) compared with nontransfected cells. Immunofluorescence analysis was used to detect the subcellular distribution of NF-kappaB (p65) under the various treatment conditions, and active DNA-bound p65 was measured using a TransAM assay and by chromatin immunoprecipitation analysis of IL-1beta. Signaling pathways were studied via Western blotting of siGR-transfected cells, compared with nontransfected and nontargeting siRNA-transfected control cells, to detect the regulation of phospho-IKK, IkappaBalpha, phospho-p38, phospho-ERK, and phospho-JNK.nnnRESULTSnBoth DEX and CpdA efficiently inhibited IL-1beta gene expression in a GR-dependent manner. In addition, CpdA attenuated the TNFalpha-induced nuclear translocation and DNA binding of p65 in RA FLS, via the attenuation of IKK phosphorylation and subsequent IkappaBalpha degradation. CpdA also displayed profound effects on TNFalpha-induced MAPK activation. The effects of CpdA on TNFalpha-induced kinase activities occurred independently of the presence of GR. In sharp contrast, DEX did not affect TNFalpha-induced IKK phosphorylation, IkappaBalpha degradation, p65 nuclear translocation, or MAPK activation in RA FLS.nnnCONCLUSIONnDEX and CpdA display a dissimilar molecular mechanism of interaction with the NF-kappaB activation pathway ex vivo. A dual pathway, partially dependent and partially independent of GR (nongenomic), may explain the gene-inhibitory effects of CpdA in RA FLS.
Molecular Endocrinology | 2010
Geert van Loo; Mozes Sze; Nadia Bougarne; Jelle Praet; Conor Mc Guire; Andrea Ullrich; Guy Haegeman; Marco Prinz; Rudi Beyaert; Karolien De Bosscher
Compound A (CpdA), a plant-derived phenyl aziridine precursor, was recently characterized as a fully dissociated nonsteroidal antiinflammatory agent, acting via activation of the glucocorticoid receptor, thereby down-modulating nuclear factor-kappaB-mediated transactivation, but not supporting glucocorticoid response element-driven gene expression. The present study demonstrates the effectiveness of CpdA in inhibiting the disease progress in experimental autoimmune encephalomyelitis (EAE), a well-characterized animal model of multiple sclerosis. CpdA treatment of mice, both early and at the peak of the disease, markedly suppressed the clinical symptoms of EAE induced by myelin oligodendrocyte glycoprotein peptide immunization. Attenuation of the clinical symptoms of EAE by CpdA was accompanied by reduced leukocyte infiltration in the spinal cord, reduced expression of inflammatory cytokines and chemokines, and reduced neuronal damage and demyelination. In vivo CpdA therapy suppressed the encephalogenicity of myelin oligodendrocyte glycoprotein peptide-specific T cells. Moreover, CpdA was able to inhibit TNF- and lipopolysaccharide-induced nuclear factor-kappaB activation in primary microglial cells in vitro, in a differential mechanistic manner as compared with dexamethasone. Finally, in EAE mice the therapeutic effect of CpdA, in contrast to that of dexamethasone, occurred in the absence of hyperinsulinemia and in the absence of a suppressive effect on the hypothalamic-pituitary-adrenal axis. Based on these results, we propose CpdA as a compound with promising antiinflammatory characteristics useful for therapeutic intervention in multiple sclerosis and other neuroinflammatory diseases.
Cellular and Molecular Life Sciences | 2014
Karolien De Bosscher; Ilse M. Beck; Lien Dejager; Nadia Bougarne; Anthoula Gaigneaux; Sébastien Chateauvieux; Dariusz Ratman; Marc Bracke; Jan Tavernier; Wim Vanden Berghe; Claude Libert; Marc Diederich; Guy Haegeman
Glucocorticoids (GCs) block inflammation via interference of the liganded glucocorticoid receptor (GR) with the activity of pro-inflammatory transcription factors NF-κB and AP-1, a mechanism known as transrepression. This mechanism is believed to involve the activity of GR monomers. Here, we explored how the GR monomer-favoring Compound A (CpdA) affects AP-1 activation and activity. Our results demonstrate that non-steroidal CpdA, unlike classic steroidal GCs, blocks NF-κB- but not AP-1-driven gene expression. CpdA rather sustains AP-1-driven gene expression, a result which could mechanistically be explained by the failure of CpdA to block upstream JNK kinase activation and concomitantly also phosphorylation of c-Jun. In concordance and in contrast to DEX, CpdA maintained the expression of the activated AP-1 target gene c-jun, as well as the production of the c-Jun protein. As for the underlying mechanism, GR is a necessary intermediate in the CpdA-mediated gene expression of AP-1-regulated genes, but seems to be superfluous to CpdA-mediated JNK phosphorylation prolongation. The latter phenomenon concurs with the inability of CpdA to stimulate DUSP1 gene expression. ChIP analysis demonstrates that DEX-activated GR, but not CpdA-activated GR, is recruited to AP-1-driven promoters. Furthermore, in mice we observed that CpdA instigates a strong enhancement of TNF-induced AP-1-driven gene expression. Finally, we demonstrate that this phenomenon coincides with an increased sensitivity towards TNF lethality, and implicate again a role for JNK2. In conclusion, our data support the hypothesis that a ligand-induced differential conformation of GR yields a different transcription factor cross-talk profile.
Biochemical Pharmacology | 2009
Ilse M. Beck; Wim Vanden Berghe; Sarah Gerlo; Nadia Bougarne; Linda Vermeulen; Karolien De Bosscher; Guy Haegeman
In the combat against inflammation, glucocorticoids (GCs) are a widespread therapeutic. These ligands of the glucocorticoid receptor (GR) inhibit the transactivation of various transcription factors, including nuclear factor-kappaB (NF-kappaB), and alter the composition of the pro-inflammatory enhanceosome, culminating in the repression of pro-inflammatory gene expression. However, pharmacological usage of GCs in long-term treatment is burdened with a detrimental side-effect profile. Recently, we discovered that GCs can lower NF-kappaB transactivation and pro-inflammatory gene expression by abolishing the recruitment of mitogen- and stress-activated protein kinase 1 (MSK1) (EC 2.7.11.1) to pro-inflammatory gene promoters and displacing a significant fraction of MSK1 to the cytoplasm. In our current investigation in L929sA fibroblasts, upon combining GCs and MSK1 inhibitors, we discovered a dose-dependent additive repression of pro-inflammatory gene expression, most likely due to diverse and multilayered repression mechanisms employed by GCs and MSK1 inhibitors. Therefore, the combined application of GCs and MSK1 inhibitors enabled a similar level of repression of pro-inflammatory gene expression, using actually a lower concentration of GCs and MSK1 inhibitors combined than would be necessary when using these inhibitors separately. Although H89 can inhibit both MSK1 and PKA, TNF does not activate PKA (EC 2.7.11.11) and as such PKA inhibition does not mediate H89-instigated repression of TNF-stimulated gene expression. Furthermore, the additional repressive effects of liganded GR and inhibition of MSK1, are not mediated via GR transactivation mechanisms. In conclusion, these results could entail a new therapeutic strategy using lower drug concentrations, potentially leading to a more beneficial side-effect profile.
PLOS ONE | 2013
Ilse M. Beck; Zuzanna Drebert; Ruben Hoya-Arias; Ali A. Bahar; Michael Devos; Dorien Clarisse; Sofie Desmet; Nadia Bougarne; Bart Ruttens; Valerie Gossye; Geertrui Denecker; Sam Lievens; Marc Bracke; Jan Tavernier; Wim Declercq; Kris Gevaert; Wim Vanden Berghe; Guy Haegeman; Karolien De Bosscher
Compound A possesses glucocorticoid receptor (GR)-dependent anti-inflammatory properties. Just like classical GR ligands, Compound A can repress NF-κB-mediated gene expression. However, the monomeric Compound A-activated GR is unable to trigger glucocorticoid response element-regulated gene expression. The heat shock response potently activates heat shock factor 1 (HSF1), upregulates Hsp70, a known GR chaperone, and also modulates various aspects of inflammation. We found that the selective GR modulator Compound A and heat shock trigger similar cellular effects in A549 lung epithelial cells. With regard to their anti-inflammatory mechanism, heat shock and Compound A are both able to reduce TNF-stimulated IκBα degradation and NF-κB p65 nuclear translocation. We established an interaction between Compound A-activated GR and Hsp70, but remarkably, although the presence of the Hsp70 chaperone as such appears pivotal for the Compound A-mediated inflammatory gene repression, subsequent novel Hsp70 protein synthesis is uncoupled from an observed CpdA-induced Hsp70 mRNA upregulation and hence obsolete in mediating CpdA’s anti-inflammatory effect. The lack of a Compound A-induced increase in Hsp70 protein levels in A549 cells is not mediated by a rapid proteasomal degradation of Hsp70 or by a Compound A-induced general block on translation. Similar to heat shock, Compound A can upregulate transcription of Hsp70 genes in various cell lines and BALB/c mice. Interestingly, whereas Compound A-dependent Hsp70 promoter activation is GR-dependent but HSF1-independent, heat shock-induced Hsp70 expression alternatively occurs in a GR-independent and HSF1-dependent manner in A549 lung epithelial cells.
Nucleic Acids Research | 2016
Dariusz Ratman; Viacheslav Mylka; Nadia Bougarne; Michal Pawlak; Sandrine Caron; Nathalie Hennuyer; Réjane Paumelle; Lode De Cauwer; Jonathan Thommis; Mark H. Rider; Claude Libert; Sam Lievens; Jan Tavernier; Bart Staels; Karolien De Bosscher
Adaptation to fasting involves both Glucocorticoid Receptor (GRα) and Peroxisome Proliferator-Activated Receptor α (PPARα) activation. Given both receptors can physically interact we investigated the possibility of a genome-wide cross-talk between activated GR and PPARα, using ChIP- and RNA-seq in primary hepatocytes. Our data reveal extensive chromatin co-localization of both factors with cooperative induction of genes controlling lipid/glucose metabolism. Key GR/PPAR co-controlled genes switched from transcriptional antagonism to cooperativity when moving from short to prolonged hepatocyte fasting, a phenomenon coinciding with gene promoter recruitment of phosphorylated AMP-activated protein kinase (AMPK) and blocked by its pharmacological inhibition. In vitro interaction studies support trimeric complex formation between GR, PPARα and phospho-AMPK. Long-term fasting in mice showed enhanced phosphorylation of liver AMPK and GRα Ser211. Phospho-AMPK chromatin recruitment at liver target genes, observed upon prolonged fasting in mice, is dampened by refeeding. Taken together, our results identify phospho-AMPK as a molecular switch able to cooperate with nuclear receptors at the chromatin level and reveal a novel adaptation mechanism to prolonged fasting.
Molecules | 2015
Anna-Maria Katsori; Ajay Palagani; Nadia Bougarne; Dimitra Hadjipavlou-Litina; Guy Haegeman; Wim Vanden Berghe
In this study a series of curcumin analogues were evaluated for their ability to inhibit the activation of NF-κΒ, a transcription factor at the crossroads of cancer-inflammation. Our novel curcumin analogue BAT3 was identified to be the most potent NF-κB inhibitor and EMSA assays clearly showed inhibition of NF-κB/DNA-binding in the presence of BAT3, in agreement with reporter gene results. Immunofluorescence experiments demonstrated that BAT3 did not seem to prevent nuclear p65 translocation, so our novel analogue may interfere with NF-κB/DNA-binding or transactivation, independently of IKK2 regulation and NF-κB-translocation. Gene expression studies on endogenous NF-κB target genes revealed that BAT3 significantly inhibited TNF-dependent transcription of IL6, MCP1 and A20 genes, whereas an NF-κB independent target gene heme oxygenase-1 remained unaffected. In conclusion, we demonstrate that BAT3 seems to inhibit different cancer-related inflammatory targets in the NF-κB signaling pathway through a different mechanism in comparison to similar analogues, previously reported.