Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nadia Papini is active.

Publication


Featured researches published by Nadia Papini.


Thrombosis Research | 1995

Inhibition of platelet aggregation and eicosanoid production by phenolic components of olive oil

A. Petroni; M. Blasevich; Marco Salami; Nadia Papini; Gian Francesco Montedoro; Claudio Galli

This study was designed to investigate the in vitro effects of phenolic compounds extracted from olive oil and from olive derived fractions. More specifically, we investigated the effects on platelets of 2-(3,4-di-hydroxyphenyl)-ethanol (DHPE), a phenol component of extra-virgin olive oil with potent antioxidant properties. The following variables were studied: aggregation of platelet rich plasma (PRP) induced by ADP or collagen, and thromboxane B2 production by collagen or thrombin-stimulated PRP. In addition, thromboxane B2 and 12-hydroxyeicosatetraenoic acid (12-HETE) produced during blood clotting were measured in serum. Preincubation of PRP with DHPE for at least 10 min resulted in maximal inhibition of the various measured variables. The IC50s (concentration resulting in 50% inhibition) of DHPE for ADP or collagen-induced PRP aggregations were 23 and 67 microM, respectively. At 400 microM DHPE, a concentration which completely inhibited collagen-induced PRP aggregation, TxB2 production by collagen- or thrombin-stimulated PRP was inhibited by over 80 percent. At the same DHPE concentration, the accumulation of TxB2 and 12-HETE in serum was reduced by over 90 and 50 percent, respectively. We also tested the effects of PRP aggregation of oleuropein, another typical olive oil phenol, and of selected flavnoids (luteolin, apigenin, quercetin) and found them to be much less active. On the other hand a partially characterized phenol-enriched extract obtained from aqueous waste from olive oil showed rather potent activities. Our results are the first evidence that components of the phenolic fraction of olive oil can inhibit platelet function and eicosanoid formation in vitro, and that other, partially characterized, olive derivatives share these biological activities.


Biochemical Journal | 2000

Identification and expression of NEU3, a novel human sialidase associated to the plasma membrane

Eugenio Monti; Maria Teresa Bassi; Nadia Papini; Mirko Riboni; Marta Manzoni; Bruno Venerando; Gianluigi Croci; Augusto Preti; Andrea Ballabio; Guido Tettamanti; Giuseppe Borsani

Several mammalian sialidases have been described so far, suggesting the existence of numerous polypeptides with different tissue distributions, subcellular localizations and substrate specificities. Among these enzymes, plasma-membrane-associated sialidase(s) have a pivotal role in modulating the ganglioside content of the lipid bilayer, suggesting their involvement in the complex mechanisms governing cell-surface biological functions. Here we describe the identification and expression of a human plasma-membrane-associated sialidase, NEU3, isolated starting from an expressed sequence tag (EST) clone. The cDNA for this sialidase encodes a 428-residue protein containing a putative transmembrane helix, a YRIP (single-letter amino acid codes) motif and three Asp boxes characteristic of sialidases. The polypeptide shows high sequence identity (78%) with the membrane-associated sialidase recently purified and cloned from Bos taurus. Northern blot analysis showed a wide pattern of expression of the gene, in both adult and fetal human tissues. Transient expression in COS7 cells permitted the detection of a sialidase activity with high activity towards ganglioside substrates at a pH optimum of 3.8. Immunofluorescence staining of the transfected COS7 cells demonstrated the proteins localization in the plasma membrane.


Cell Death & Differentiation | 2006

Reversine-treated fibroblasts acquire myogenic competence in vitro and in regenerating skeletal muscle

Luigi Anastasia; Maurilio Sampaolesi; Nadia Papini; Diego Oleari; Giuseppe Lamorte; Cristina Tringali; Eugenio Monti; Daniela Galli; Guido Tettamanti; Giulio Cossu; Bruno Venerando

Stem cells hold a great potential for the regeneration of damaged tissues in cardiovascular or musculoskeletal diseases. Unfortunately, problems such as limited availability, control of cell fate, and allograft rejection need to be addressed before therapeutic applications may become feasible. Generation of multipotent progenitors from adult differentiated cells could be a very attractive alternative to the limited in vitro self-renewal of several types of stem cells. In this direction, a recently synthesized unnatural purine, named reversine, has been proposed to induce reversion of adult cells to a multipotent state, which could be then converted into other cell types under appropriate stimuli. Our study suggests that reversine treatment transforms primary murine and human dermal fibroblasts into myogenic-competent cells both in vitro and in vivo. Moreover, this is the first study to demonstrate that plasticity changes arise in primary mouse and human cells following reversine exposure.


Journal of Leukocyte Biology | 2010

LPS-induced cytokine production in human dendritic cells is regulated by sialidase activity

Nicholas M. Stamatos; Ivan Carubelli; Diantha van de Vlekkert; Erik Bonten; Nadia Papini; Chiguang Feng; Bruno Venerando; Alessandra d'Azzo; Alan S. Cross; Lai-Xi Wang; Peter J. Gomatos

Removal of sialic acid from glycoconjugates on the surface of monocytes enhances their response to bacterial LPS. We tested the hypothesis that endogenous sialidase activity creates a permissive state for LPS‐induced cytokine production in human monocyte‐derived DCs. Of the four genetically distinct sialidases (Neu1–4), Neu1, Neu3, and Neu4 are expressed in human monocytes, but only Neu1 and Neu3 are up‐regulated as cells differentiate into DCs. Neu1 and Neu3 are present on the surface of monocytes and DCs and are also present intracellularly. DCs contain a greater amount of sialic acid than monocytes, but the amount of sialic acid/mg total protein declines during differentiation to DCs. This relative hyposialylation of cells does not occur in mature DCs grown in the presence of zanamivir, a pharmacologic inhibitor of Neu3 but not Neu1, or DANA, an inhibitor of Neu1 and Neu3. Inhibition of sialidase activity during differentiation to DCs causes no detectable change in cell viability or expression of DC surface markers. Differentiation of monocytes into DCs in the presence of zanamivir results in reduced LPS‐ induced expression of IL‐6, IL‐12p40, and TNF‐α by mature DCs, demonstrating a role for Neu3 in cytokine production. A role for Neu3 is supported by inhibition of cytokine production by DANA in DCs from Neu1–/– and WT mice. We conclude that sialidase‐mediated change in sialic acid content of specific cell surface glycoconjugates in DCs regulates LPS‐induced cytokine production, thereby contributing to development of adaptive immune responses.


Thrombosis Research | 1997

INHIBITION OF LEUKOCYTE LEUKOTRIENE B4 PRODUCTION BY AN OLIVE OIL-DERIVED PHENOL IDENTIFIED BY MASS-SPECTROMETRY

A. Petroni; M. Blasevich; Nadia Papini; Marco Salami; Angelo Sala; Claudio Galli

We have evaluated the effects of hydroxytyrosol (HT), a potent antioxidant present in olive oil, on the formation of arachidonic acid 5-lipoxygenase metabolites by leukocytes in vitro. HT, a simple phenolic compound, extracted from first-pressure oil, was isolated by HPLC and characterized by gas chromatography/mass spectrometry. HT inhibited in a dose-related manner the production of leukotriene B4 (LTB4) by calcium ionophore-stimulated leukocytes. As expected, similar inhibition was observed for omega-oxidized metabolites of LTB4, namely 20-hydroxy and 20-carboxy-LTB4. The results disclose a new biological activity of olive oil-derived phenols on leukocyte eicosanoid production.


Journal of Biological Chemistry | 2008

NEU3 Sialidase Strictly Modulates GM3 Levels in Skeletal Myoblasts C2C12 Thus Favoring Their Differentiation and Protecting Them from Apoptosis

Luigi Anastasia; Nadia Papini; Francesca Colazzo; Giacomo Palazzolo; Cristina Tringali; Loredana Dileo; Marco Piccoli; Erika Conforti; Clementina Sitzia; Eugenio Monti; Maurilio Sampaolesi; Guido Tettamanti; Bruno Venerando

Membrane-bound sialidase NEU3, often referred to as the “ganglioside sialidase,” has a critical regulatory function on the sialoglycosphingolipid pattern of the cell membrane, with an anti-apoptotic function, especially in cancer cells. Although other sialidases have been shown to be involved in skeletal muscle differentiation, the role of NEU3 had yet to be disclosed. Herein we report that NEU3 plays a key role in skeletal muscle differentiation by strictly modulating the ganglioside content of adjacent cells, with special regard to GM3. Induced down-regulation of NEU3 in murine C2C12 myoblasts, even when partial, totally inhibits their capability to differentiate by increasing the GM3 level above a critical point, which causes epidermal growth factor receptor inhibition (and ultimately its down-regulation) and an higher responsiveness of myoblasts to the apoptotic stimuli.


Journal of Biological Chemistry | 2007

Expression of Sialidase Neu2 in Leukemic K562 Cells Induces Apoptosis by Impairing Bcr-Abl/Src Kinases Signaling

Cristina Tringali; Barbara Lupo; Luigi Anastasia; Nadia Papini; Eugenio Monti; Roberto Bresciani; Guido Tettamanti; Bruno Venerando

Chronic myeloid leukemia is a hematopoietic stem cell cancer, originated by the perpetually “switched on” activity of the tyrosine kinase Bcr-Abl, leading to uncontrolled proliferation and insensitivity to apoptotic stimuli. The genetic phenotype of myeloid leukemic K562 cells includes the suppression of cytosolic sialidase Neu2. Neu2 transfection in K562 cells induced a marked decrease (-30% and -80%) of the mRNA of the anti-apoptotic factors Bcl-XL and Bcl-2, respectively, and an almost total disappearance of Bcl-2 protein. In addition, gene expression and activity of Bcr-Abl underwent a 35% diminution, together with a marked decrease of Bcr-Abl-dependent Src and Lyn kinase activity. Thus, the antiapoptotic axis Bcr-Abl, Src, and Lyn, which stimulates the formation of Bcl-XL and Bcl-2, was remarkably weakened. The ultimate consequences of these modifications were an increased susceptibility to apoptosis of K562 cells and a marked reduction of their proliferation rate. The molecular link between Neu2 activity and Bcr-Abl signaling pathway may rely on the desialylation of some cytosolic glycoproteins. In fact, three cytosolic glycoproteins, in the range 45–66 kDa, showed a 50–70% decrease of their sialic acid content upon Neu2 expression, supporting their possible role as modulators of the Bcr-Abl complex.


Journal of Biological Chemistry | 2012

The Plasma Membrane Sialidase NEU3 Regulates the Malignancy of Renal Carcinoma Cells by Controlling β1 Integrin Internalization and Recycling

Cristina Tringali; Barbara Lupo; Ilaria Silvestri; Nadia Papini; Luigi Anastasia; Guido Tettamanti; Bruno Venerando

Background: NEU3 is involved in ganglioside surface metabolism and is up-regulated in renal carcinoma cells. Results: NEU3 regulates β1 integrin trafficking and the downstream FAK/AKT pathway, influencing drug resistance and invasive potential. Conclusion: NEU3 is a key regulator of renal cell carcinoma malignancy. Significance: NEU3 could be a new target for molecular therapies for renal carcinoma. The human plasma membrane sialidase NEU3 is a key enzyme in the catabolism of membrane gangliosides, is crucial in the regulation of cell surface processes, and has been demonstrated to be significantly up-regulated in renal cell carcinomas (RCCs). In this report, we show that NEU3 regulates β1 integrin trafficking in RCC cells by controlling β1 integrin recycling to the plasma membrane and controlling activation of the epidermal growth factor receptor (EGFR) and focal adhesion kinase (FAK)/protein kinase B (AKT) signaling. NEU3 silencing in RCC cells increased the membrane ganglioside content, in particular the GD1a content, and changed the expression of key regulators of the integrin recycling pathway. In addition, NEU3 silencing up-regulated the Ras-related protein RAB25, which directs internalized integrins to lysosomes, and down-regulated the chloride intracellular channel protein 3 (CLIC3), which induces the recycling of internalized integrins to the plasma membrane. In this manner, NEU3 silencing enhanced the caveolar endocytosis of β1 integrin, blocked its recycling and reduced its levels at the plasma membrane, and, consequently, inhibited EGFR and FAK/AKT. These events had the following effects on the behavior of RCC cells: they (a) decreased drug resistance mediated by the block of autophagy and the induction of apoptosis; (b) decreased metastatic potential mediated by down-regulation of the metalloproteinases MMP1 and MMP7; and (c) decreased adhesion to collagen and fibronectin. Therefore, our data identify NEU3 as a key regulator of the β1 integrin-recycling pathway and FAK/AKT signaling and demonstrate its crucial role in RCC malignancy.


Cell Death & Differentiation | 2009

Silencing of membrane-associated sialidase Neu3 diminishes apoptosis resistance and triggers megakaryocytic differentiation of chronic myeloid leukemic cells K562 through the increase of ganglioside GM3.

Cristina Tringali; B Lupo; F Cirillo; Nadia Papini; Luigi Anastasia; Giuseppe Lamorte; Paolo Colombi; Roberto Bresciani; Eugenio Monti; Guido Tettamanti; Bruno Venerando

In chronic myeloid leukemia K562 cells, differentiation is also blocked because of low levels of ganglioside GM3, derived by the high expression of sialidase Neu3 active on GM3. In this article, we studied the effects of Neu3 silencing (40–70% and 63–93% decrease in protein content and activity, respectively) in these cells. The effects were as follows: (a) gangliosides GM3, GM1, and sialosylnorhexaosylceramide increased markedly; (b) cell growth and [3H]thymidine incorporation diminished relevantly; (c) as mRNA, cyclin D2, and Myc were much less expressed, whereas cyclin D1 was expressed more like its inhibitor p21; (d) as mRNA, pro-apoptotic proteins Bax and Bad increased with concurrent decrease and increase in the anti-apoptotic proteins Bcl-2 and Bcl-XL, respectively; (e) the apoptosis inducers etoposide and staurosporine were active on Neu3 silencing cells but not on mock cells; (f) as mRNA, the megakaryocytic markers CD10, CD44, CD41, and CD61 increased similar to the case of mock cells stimulated with PMA; (g) the signaling cascades mediated by PLC-β2, PKC, RAF, ERK1/2, RSK90, and JNK were largely activated. The induction of a GM3-rich ganglioside pattern in K562 cells by treatment with brefeldin A elicited a phenotype similar to that of Neu3 silencing cells. In conclusion, upon Neu3 silencing, K562 cells show a decrease in proliferation, propensity to undergo apoptosis, and megakaryocytic differentiation.


Journal of Biological Chemistry | 2013

NEU3 sialidase is activated under hypoxia and protects skeletal muscle cells from apoptosis through the activation of the epidermal growth factor receptor signaling pathway and the hypoxia-inducible factor (HIF)-1α.

Raffaella Scaringi; Marco Piccoli; Nadia Papini; Federica Cirillo; Erika Conforti; Sonia Bergante; Cristina Tringali; Andrea Garatti; Cecilia Gelfi; Bruno Venerando; Lorenzo Menicanti; Guido Tettamanti; Luigi Anastasia

Background: NEU3 sialidase removes sialic acid from gangliosides on adjacent cells. Results: NEU3 is up-regulated upon exposure of skeletal myoblasts to hypoxic stress, and it stimulates the EGFR signaling cascade ultimately activating HIF-1α. Conclusion: NEU3 plays a physiological role in protecting myoblasts from hypoxic stress. Significance: NEU3 role in cell response to hypoxia may suggest new therapeutic approaches to ischemic diseases. NEU3 sialidase, a key enzyme in ganglioside metabolism, is activated under hypoxic conditions in cultured skeletal muscle cells (C2C12). NEU3 up-regulation stimulates the EGF receptor signaling pathway, which in turn activates the hypoxia-inducible factor (HIF-1α), resulting in a final increase of cell survival and proliferation. In the same cells, stable overexpression of sialidase NEU3 significantly enhances cell resistance to hypoxia, whereas stable silencing of the enzyme renders cells more susceptible to apoptosis. These data support the working hypothesis of a physiological role played by NEU3 sialidase in protecting cells from hypoxic stress and may suggest new directions in the development of therapeutic strategies against ischemic diseases, particularly of the cerebro-cardiovascular system.

Collaboration


Dive into the Nadia Papini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge