Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nadiah Abu is active.

Publication


Featured researches published by Nadiah Abu.


PLOS ONE | 2014

Flavokawain A Induces Apoptosis in MCF-7 and MDA-MB231 and Inhibits the Metastatic Process In Vitro

Nadiah Abu; M. Nadeem Akhtar; Swee Keong Yeap; Kian Lam Lim; Wan Yong Ho; Aimi Jamil Zulfadli; Abdul Rahman Omar; Mohd Roslan Sulaiman; Mohd Puad Abdullah; Noorjahan Banu Alitheen

Introduction The kava-kava plant (Piper methsyticum) is traditionally known as the pacific elixir by the pacific islanders for its role in a wide range of biological activities. The extract of the roots of this plant contains a variety of interesting molecules including Flavokawain A and this molecule is known to have anti-cancer properties. Breast cancer is still one of the leading diagnosed cancers in women today. The metastatic process is also very pertinent in the progression of tumorigenesis. Methods MCF-7 and MDA-MB231 cells were treated with several concentrations of FKA. The apoptotic analysis was done through the MTT assay, BrdU assay, Annexin V analysis, cell cycle analysis, JC-1 mitochondrial dye, AO/PI dual staining, caspase 8/9 fluorometric assay, quantitative real time PCR and western blot. For the metastatic assays, the in vitro scratch assay, trans-well migration/invasion assay, HUVEC tube formation assay, ex vivo rat aortic ring assay, quantitative real time PCR and western blot were employed. Results We have investigated the effects of FKA on the apoptotic and metastatic process in two breast cancer cell lines. FKA induces apoptosis in both MCF-7 and MDA-MB231 in a dose dependent manner through the intrinsic mitochondrial pathway. Additionally, FKA selectively induces a G2/M arrest in the cell cycle machinery of MDA-MB231 and G1 arrest in MCF-7. This suggests that FKAs anti-cancer activity is dependent on the p53 status. Moreover, FKA also halted the migration and invasion process in MDA-MB231. The similar effects can be seen in the inhibition of the angiogenesis process as well. Conclusions FKA managed to induce apoptosis and inhibit the metastatic process in two breast cancer cell lines, in vitro. Overall, FKA may serve as a promising candidate in the search of a new anti-cancer drug especially in halting the metastatic process but further in vivo evidence is needed.


Cancer Cell International | 2013

The flavokawains: uprising medicinal chalcones

Nadiah Abu; Wan Yong Ho; Swee Keong Yeap; Muhammad Nadeem Akhtar; Mohd Puad Abdullah; Abdul Rahman Omar; Noorjahan Banu Mohammed Alitheen

Plant-based compounds have been in the spotlight in search of new and promising drugs. Flavokawain A, B and C are naturally occurring chalcones that have been isolated from several medicinal plants; namely the piper methysticum or commercially known as the kava-kava. Multiple researches have been done to evaluate the bioactivities of these compounds. It has been shown that all three flavokawains may hold promising anti-cancer effects. It has also been revealed that both flavokawain A and B are involved in the induction of cell cycle arrest in several cancer cell lines. Nevertheless, flavokawain B was shown to be more effective in treating in vitro cancer cell lines as compared to flavokawain A and C. Flavokawain B also exerts antinociceptive effects as well as anti-inflammation properties. This mini-review attempts to discuss the biological properties of all the flavokawains that have been reported.


Molecules | 2013

3-Bromo-1-hydroxy-9,10-anthraquinone (BHAQ) inhibits growth and migration of the human breast cancer cell lines MCF-7 and MDA-MB231.

Nadiah Abu; Muhammad Nadeem Akhtar; Wan Yong Ho; Swee Keong Yeap; Noorjahan Banu Mohammed Alitheen

Breast cancer is becoming more prominent in women today. As of now, there are no effective treatments in treating metastatic breast cancer. We have tested the cytotoxic and anti-migration effects of BHAQ, a synthesized anthraquinone, on two breast cancer cell lines, MCF-7 and MDA-MB231. Anthraquinones are an interesting class of molecules that display a wide spectrum of biological applications, including anticancer properties. Cellular inhibition was tested through a MTT assay, double acridine orange/propidium iodide staining and FACS cell cycle analysis. Inhibition of migration was tested by the wound healing method, and migration through a Boyden chamber. BHAQ was cytotoxic towards both cell lines in a dose dependent and possibly cell-dependent manner. Additionally, BHAQ also inhibited the migration of the highly metastatic MDA-MB231 cell line.


Journal of Colloid and Interface Science | 2016

In vivo tumor targeting and anti-tumor effects of 5-fluororacil loaded, folic acid targeted quantum dot system

Ibrahim Birma Bwatanglang; Faruq Mohammad; Nor Azah Yusof; Jaafar Abdullah; Noorjahan Banu Alitheen; Mohd Zubir Hussein; Nadiah Abu; Nurul Elyani Mohammed; Noraini Nordin; Nur Rizi Zamberi; Swee Keong Yeap

In this study, we modulated the anti-cancer efficacy of 5-Fluorouracil (5-FU) using a carrier system with enhanced targeting efficacy towards folate receptors (FRs) expressing malignant tissues. The 5-FU drug was loaded onto Mn-ZnS quantum dots (QDs) encapsulated with chitosan (CS) biopolymer and conjugated with folic acid (FA) based on a simple wet chemical method. The formation of 5-FU drug loaded composite was confirmed using Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Furthermore, the in vivo biodistribution and tumor targeting specificity of the 5-FU@FACS-Mn:ZnS in the tumor-bearing mice was conducted based on the Zn(2+) tissue bioaccumulation using inductively coupled plasma (ICP) spectroscopy. In addition to the characterization, the in vitro release profile of 5-FU from the conjugates investigated under diffusion controlled method demonstrated a controlled release behaviour as compared against the release behaviour of free 5-FU drug. The as-synthesized 5-FU@FACS-Mn:ZnS nanoparticle (NP) systemically induced higher level of apoptosis in breast cancer cells in vitro as compared to cells treated with free 5-FU drug following both cell cycle and annexin assays, respectively. Also, the in vivo toxicity assessment of the 5-FU@FACS-Mn:ZnS NPs as compared to the control did not cause any significant increase in the activities of the liver and kidney function biomarkers, malondialdehyde (MDA) and nitric oxide (NO) levels. However, based on the FA-FRs chemistry, the 5-FU@FACS-Mn:ZnS NPs specifically accumulated in the tumor of the tumor-bearing mice and thus contributed to the smaller tumor size and less event of metastasis was observed in the lungs when compared to the tumor-bearing mice groups treated with the free 5-FU drug. In summary, the results demonstrated that the 5-FU@FACS-Mn:ZnS QDs exhibits selective anti-tumor effect in MDA-MB231 breast cancer cells in vitro and 4TI breast cancer cells in vivo, providing a blueprint for improving the 5-FU efficacy and tumor targeting specificity with limited systemic toxicity.


Drug Design Development and Therapy | 2015

In vivo antitumor and antimetastatic effects of flavokawain B in 4T1 breast cancer cell-challenged mice

Nadiah Abu; Nurul Elyani Mohamed; Swee Keong Yeap; Kian Lam Lim; M. Nadeem Akhtar; Aimi Jamil Zulfadli; Beh Boon Kee; Mohd Puad Abdullah; Abdul Rahman Omar; Noorjahan Banu Alitheen

Flavokawain B (FKB) is a naturally occurring chalcone that can be isolated through the root extracts of the kava-kava plant (Piper methysticum). It can also be synthesized chemically to increase the yield. This compound is a promising candidate as a biological agent, as it is reported to be involved in a wide range of biological activities. Furthermore, FKB was reported to have antitumorigenic effects in several cancer cell lines in vitro. However, the in vivo antitumor effects of FKB have not been reported on yet. Breast cancer is one of the major causes of cancer-related deaths in the world today. Any potential treatment should not only impede the growth of the tumor, but also modulate the immune system efficiently and inhibit the formation of secondary tumors. As presented in our study, FKB induced apoptosis in 4T1 tumors in vivo, as evidenced by the terminal deoxynucleotidyl transferase dUTP nick end labeling and hematoxylin and eosin staining of the tumor. FKB also regulated the immune system by increasing both helper and cytolytic T-cell and natural killer cell populations. In addition, FKB also enhanced the levels of interleukin 2 and interferon gamma but suppressed interleukin 1B. Apart from that, FKB was also found to inhibit metastasis, as evaluated by clonogenic assay, bone marrow smearing assay, real-time polymerase chain reaction, Western blot, and proteome profiler analysis. All in all, FKB may serve as a promising anticancer agent, especially in treating breast cancer.


BMC Complementary and Alternative Medicine | 2016

Flavokawain B induced cytotoxicity in two breast cancer cell lines, MCF-7 and MDA-MB231 and inhibited the metastatic potential of MDA-MB231 via the regulation of several tyrosine kinases In vitro.

Nadiah Abu; M. Nadeem Akhtar; Swee Keong Yeap; Kian Lam Lim; Wan Yong Ho; Mohd Puad Abdullah; Chai Ling Ho; Abdul Rahman Omar; Jamil Ismail; Noorjahan Banu Alitheen

BackgroundThe kava-kava plant (Piper methysticum) is traditionally consumed by the pacific islanders and has been linked to be involved in several biological activities. Flavokawain B is a unique chalcone, which can be found in the roots of the kava-kava plant. In this study, the operational mechanism of the anti-cancer activity of a synthetic Flavokawain B (FKB) on two breast cancer cell lines, MCF-7 and MDA-MB231 was investigated.MethodSeveral in vitro assays were attempted such as MTT, flow cytometry of cell cycle analysis, annexin V analysis, and JC-1 analysis to detect apoptosis. Moreover, in vitro metastasis assays were also performed such as transwell migration assay, invasion assay, rat aorta ring and HUVEC tube formation. Molecular analysis of related genes and proteins were conducted using real-time PCR and proteome profiler analysis.ResultsBased on our results, apoptosis was induced when both MCF-7 and MDA-MB231 were treated with FKB. A significant G2/M arrest was seen in MDA-MB231 cells. Additionally, FKB also inhibited the in vitro migration and invasion in MDA-MB231 cells in a dose dependent manner. Moreover, FKB can be a potential inhibitor in angiogenesis as it suppressed the formation of vessels in HUVEC cells as well as in the ex-vivo rat aortic ring assay.ConclusionOur findings suggested that FKB also regulated several receptor tyrosine kinases. Overall, FKB is not only a potential candidate to be an anti-cancer agent, but as an anti-metastatic agent as well.


Drug Design Development and Therapy | 2015

Synthesis of an anthraquinone derivative (DHAQC) and its effect on induction of G2/M arrest and apoptosis in breast cancer MCF-7 cell line

Swee Keong Yeap; Muhammad Nadeem Akhtar; Kian Lam Lim; Nadiah Abu; Wan Yong Ho; Seema Zareen; Kiarash Roohani; Huynh Ky; Sheau Wei Tan; Nordin Hj. Lajis; Noorjahan Banu Mohammed Alitheen

Anthraquinones are an important class of naturally occurring biologically active compounds. In this study, anthraquinone derivative 1,3-dihydroxy-9,10-anthraquinone-2- carboxylic acid (DHAQC) (2) was synthesized with 32% yield through the Friedel–Crafts condensation reaction. The mechanisms of cytotoxicity of DHAQC (2) in human breast cancer MCF-7 cells were further investigated. Results from the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that DHAQC (2) exhibited potential cytotoxicity and selectivity in the MCF-7 cell line, comparable with the naturally occurring anthraquinone damnacanthal. DHAQC (2) showed a slightly higher IC50 (inhibitory concentration with 50% cell viability) value in the MCF-7 cell line compared to damnacanthal, but it is more selective in terms of the ratio of IC50 on MCF-7 cells and normal MCF-10A cells. (selective index for DHAQC (2) was 2.3 and 1.7 for damnacanthal). The flow cytometry cell cycle analysis on the MCF-7 cell line treated with the IC50 dose of DHAQC (2) for 48 hours showed that DHAQC (2) arrested MCF-7 cell line at the G2/M phase in association with an inhibited expression of PLK1 genes. Western blot analysis also indicated that the DHAQC (2) increased BAX, p53, and cytochrome c levels in MCF-7 cells, which subsequently activated apoptosis as observed in annexin V/propidium iodide and cell cycle analyses. These results indicate that DHAQC (2) is a synthetic, cytotoxic, and selective anthraquinone, which is less toxic than the natural product damnacanthal, and which demonstrates potential in the induction of apoptosis in the breast cancer MCF-7 cell line.


Molecules | 2016

Combinatorial Cytotoxic Effects of Damnacanthal and Doxorubicin against Human Breast Cancer MCF-7 Cells in Vitro

Muhammad Yusran Abdul Aziz; Nadiah Abu; Swee Keong Yeap; Wan Yong Ho; Abdul Rahman Omar; Nor Hadiani Ismail; Syahida Ahmad; Mehdi R. Pirozyan; Nadeem M. Akhtar; Noorjahan Banu Alitheen

Despite progressive research being done on drug therapy to treat breast cancer, the number of patients succumbing to the disease is still a major issue. Combinatorial treatment using different drugs and herbs to treat cancer patients is of major interest in scientists nowadays. Doxorubicin is one of the most used drugs to treat breast cancer patients. The combination of doxorubicin to other drugs such as tamoxifen has been reported. Nevertheless, the combination of doxorubicin with a natural product-derived agent has not been studied yet. Morinda citrifolia has always been sought out for its remarkable remedies. Damnacanthal, an anthraquinone that can be extracted from the roots of Morinda citrifolia is a promising compound that possesses a variety of biological properties. This study aimed to study the therapeutic effects of damnacanthal in combination with doxorubicin in breast cancer cells. Collectively, the combination of both these molecules enhanced the efficacy of induced cell death in MCF-7 as evidenced by the MTT assay, cell cycle, annexin V and expression of apoptosis-related genes and proteins. The effectiveness of doxorubicin as an anti-cancer drug was increased upon addition of damnacanthal. These results could provide a promising approach to treat breast cancer patients.


BMC Complementary and Alternative Medicine | 2015

Chemopreventive and immunomodulatory effects of Murraya koenigii aqueous extract on 4T1 breast cancer cell-challenged mice

Swee Keong Yeap; Nadiah Abu; Nurul Elyani Mohamad; Boon Kee Beh; Wan Yong Ho; Siamak Ebrahimi; Hamidah Mohd Yusof; Huynh Ky; Sheau Wei Tan; Noorjahan Banu Alitheen

BackgroundThe progression of breast cancer is increasing at an alarming rate, particularly in western countries. Meanwhile, the lower incidence in Asian countries could be attributed to the heavy incorporation of green leaves vegetables or spices in their diets. Murraya koenigii (MK) or often times known as curry leaves are common spice used mostly in tropical countries. Anti-inflammatory and chemopreventive effects of MK aqueous extract on 4T1 breast cancer cell-challenged mice were evaluated.MethodsHerein, cytotoxic activity of MK was first tested on 4T1 cells in vitroby MTT assay. Then, in vivo chemopreventive study was conducted where mice were fed with extracts prior to and after inducing the tumor (inoculation). Tumor size was monitored post-4T1 inoculation. At the end of experiment, histopathology of tumor sections, T cell immunophenotyping, tumor nitric oxide level, serum cytokine level and qPCR analysis on expression of iNOS, iCAM, NF-kB and c-MYC were performed.ResultsMK reduced the tumors’ size and lung metastasis aside from inhibited the viability of 4T1 cells in vitro. Furthermore, it decreased the level of nitric oxide and inflammation-related cytokines and genes, including iNOS, iCAM, NF-kB and c-MYC.ConclusionThe results propose that, MK managed to inhibit the progression of tumor via immunostimulatory effect and inflammatory reaction within the tumor samples. This suggests that MKconsumption could be a savior in the search of new chemopreventive agents.


Anti-cancer Agents in Medicinal Chemistry | 2015

In Vivo Anti-Tumor Effects of Flavokawain A in 4T1 Breast Cancer Cell-Challenged Mice

Nadiah Abu; Nurul Elyani Mohamed; Swee Keong Yeap; Kian Lam Lim; M. Nadeem Akhtar; Aimi Jamil Zulfadli; Beh Boon Kee; Mohd Puad Abdullah; Abdul Rahman Omar; Noorjahan Banu Alitheen

Flavokawain A is a chalcone that can be found in the kava-kava plant (Piper methsyticum) extract. The kava-kava plant has been reported to possess anti-cancer, anti-inflammatory and antinociceptive activities. The state of the immune system, and the inflammatory process play vital roles in the progression of cancer. The immunomodulatary effects and the anti-inflammatory effects of flavokawain A in a breast cancer murine model have not been studied yet. Thus, this study aimed to elucidate the basic mechanism as to how flavokawain A regulates and enhance the immune system as well as impeding the inflammatory process in breast cancer-challenged mice. Based on our study, it is interesting to note that flavokawain A increased the T cell population; both Th1 cells and CTLs, aside from the natural killer cells. The levels of IFN-γ and IL-2 were also elevated in the serum of flavokawain A-treated mice. Apart from that, flavokawain A also decreased the weight and volume of the tumor, and managed to induce apoptosis in them. In terms of inflammation, flavokawain A-treated mice had reduced level of major pro-inflammatory mediators; NO, iNOS, NF-KB, ICAM and COX-2. Overall, flavokawain A has the potential to not only enhance antitumor immunity, but also prevents the inflammatory process in a cancer-prone microenvironment.

Collaboration


Dive into the Nadiah Abu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Swee Keong Yeap

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

Wan Yong Ho

University of Nottingham Malaysia Campus

View shared research outputs
Top Co-Authors

Avatar

Kian Lam Lim

Universiti Tunku Abdul Rahman

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Nadeem Akhtar

Universiti Malaysia Pahang

View shared research outputs
Top Co-Authors

Avatar

Noraini Nordin

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sheau Wei Tan

Universiti Putra Malaysia

View shared research outputs
Researchain Logo
Decentralizing Knowledge