Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nadim W. Alkharouf is active.

Publication


Featured researches published by Nadim W. Alkharouf.


Cancer Research | 2009

The mRNA-destabilizing protein tristetraprolin is suppressed in many cancers, altering tumorigenic phenotypes and patient prognosis

Sarah E. Brennan; Yuki Kuwano; Nadim W. Alkharouf; Perry J. Blackshear; Myriam Gorospe; Gerald M. Wilson

AU-rich element-binding proteins (ARE-BP) regulate the stability and/or translational efficiency of mRNAs containing cognate binding sites. Many targeted transcripts encode factors that control processes such as cell division, apoptosis, and angiogenesis, suggesting that dysregulated ARE-BP expression could dramatically influence oncogenic phenotypes. Using several approaches, we evaluated the expression of four well-characterized ARE-BPs across a variety of human neoplastic syndromes. AUF1, TIA-1, and HuR mRNAs were not systematically dysregulated in cancers; however, tristetraprolin mRNA levels were significantly decreased across many tumor types, including advanced cancers of the breast and prostate. Restoring tristetraprolin expression in an aggressive tumor cell line suppressed three key tumorgenic phenotypes: cell proliferation, resistance to proapoptotic stimuli, and expression of vascular endothelial growth factor mRNA. However, the cellular consequences of tristetraprolin expression varied across different cell models. Analyses of gene array data sets revealed that suppression of tristetraprolin expression is a negative prognostic indicator in breast cancer, because patients with low tumor tristetraprolin mRNA levels were more likely to present increased pathologic tumor grade, vascular endothelial growth factor expression, and mortality from recurrent disease. Collectively, these data establish that tristetraprolin expression is frequently suppressed in human cancers, which in turn can alter tumorigenic phenotypes that influence patient outcomes.


The Plant Cell | 2013

Genome-Scale Transcriptomic Insights into Early-Stage Fruit Development in Woodland Strawberry Fragaria vesca

Chunying Kang; Omar Darwish; Aviva Geretz; Rachel Shahan; Nadim W. Alkharouf; Zhongchi Liu

To investigate molecular mechanisms underlying strawberry fruit set, genome-scale gene expression profiles during early stage fruit development were generated in a woodland strawberry, which revealed crucial roles of endosperm and seed coat in the synthesis and transport of auxin and gibberellic acid to the receptacle of strawberry flowers to stimulate fruit development. Fragaria vesca, a diploid woodland strawberry with a small and sequenced genome, is an excellent model for studying fruit development. The strawberry fruit is unique in that the edible flesh is actually enlarged receptacle tissue. The true fruit are the numerous dry achenes dotting the receptacle’s surface. Auxin produced from the achene is essential for the receptacle fruit set, a paradigm for studying crosstalk between hormone signaling and development. To investigate the molecular mechanism underlying strawberry fruit set, next-generation sequencing was employed to profile early-stage fruit development with five fruit tissue types and five developmental stages from floral anthesis to enlarged fruits. This two-dimensional data set provides a systems-level view of molecular events with precise spatial and temporal resolution. The data suggest that the endosperm and seed coat may play a more prominent role than the embryo in auxin and gibberellin biosynthesis for fruit set. A model is proposed to illustrate how hormonal signals produced in the endosperm and seed coat coordinate seed, ovary wall, and receptacle fruit development. The comprehensive fruit transcriptome data set provides a wealth of genomic resources for the strawberry and Rosaceae communities as well as unprecedented molecular insight into fruit set and early stage fruit development.


Experimental Parasitology | 2011

Post-transcriptional gene silencing of root-knot nematode in transformed soybean roots.

Heba M.M. Ibrahim; Nadim W. Alkharouf; Susan L. F. Meyer; Mohammed A. M. Aly; Abd El Kader Y. Gamal El-Din; Ebtissam H. A. Hussein; Benjamin F. Matthews

RNAi constructs targeted to four different genes were examined to determine their efficacy to reduce galls formed by Meloidogyne incognita in soybean roots. These genes have high similarity with essential soybean cyst nematode (Heterodera glycines) and Caenorhabditis elegans genes. Transformed roots were challenged with M. incognita. Two constructs, targeted to genes encoding tyrosine phosphatase (TP) and mitochondrial stress-70 protein precursor (MSP), respectively, strongly interfered with M. incognita gall formation. The number of galls formed on roots transformed with constructs targeting the M. incognita TP and MSP genes was reduced by 92% and 94.7%, respectively. The diameter of M. incognita inside these transformed roots was 5.4 and 6.5 times less than the diameter of M. incognita found inside control plants transformed with the empty vector. These results indicate that silencing the genes encoding TP and MSP can greatly decrease gall formation and shows a promising solution for broadening resistance of plants against this plant-parasitic nematode.


Applied Microbiology and Biotechnology | 2003

Profiling local gene expression changes associated with Eimeria maxima and Eimeria acervulina using cDNA microarray

Wongi Min; Hyun S. Lillehoj; Sungwon Kim; J J Zhu; Hunter S. Beard; Nadim W. Alkharouf; Bernard Matthews

Eimeria parasites show preferential sites of invasion in the avian intestine and produce a species-specific host immune response. Two economically important species, Eimeria acervulina and Eimeria maxima, preferentially invade and develop in the avian duodenum and jejunum/ileum, respectively. To investigate local host immune responses induced by parasite infection, global transcriptional changes in intestinal intraepithelial lymphocytes (IELs) induced by oral inoculation of chickens with E. acervulina or E. maxima were monitored using cDNA microarrays containing 400 unique chicken genes. Multiple gene transcripts were significantly up- or down-regulated following primary or secondary infection with E. acervulina or E. maxima. In general, infection by either parasite resulted in the expression changes of more genes following primary infection than following secondary infection, and E. acervulina caused more changes than did E. maxima. Although different regions of the small intestine were infected, similar changes in the levels of several cytokine mRNAs were observed in both Eimeria species following primary infection. Also identified was a set of transcripts whose expression was commonly enhanced or repressed in intestinal IELs of chickens infected with either parasite. Microarray analysis of chicken genes induced or repressed following Eimeria infection offers a powerful tool to enhance our understanding of host–parasite interactions leading to protective immunity.


BMC Genomics | 2011

Analysis of Gene expression in soybean (Glycine max) roots in response to the root knot nematode Meloidogyne incognita using microarrays and KEGG pathways

Heba M.M. Ibrahim; Parsa Hosseini; Nadim W. Alkharouf; Ebtissam H. A. Hussein; Abd El Kader Y. Gamal El-Din; Mohammed A. M. Aly; Benjamin F. Matthews

BackgroundRoot-knot nematodes are sedentary endoparasites that can infect more than 3000 plant species. Root-knot nematodes cause an estimated


Plant Physiology and Biochemistry | 2010

Syncytium gene expression in Glycine max([PI 88788]) roots undergoing a resistant reaction to the parasitic nematode Heterodera glycines.

Vincent P. Klink; Parsa Hosseini; Prachi D. Matsye; Nadim W. Alkharouf; Benjamin F. Matthews

100 billion annual loss worldwide. For successful establishment of the root-knot nematode in its host plant, it causes dramatic morphological and physiological changes in plant cells. The expression of some plant genes is altered by the nematode as it establishes its feeding site.ResultsWe examined the expression of soybean (Glycine max) genes in galls formed in roots by the root-knot nematode, Meloidogyne incognita, 12 days and 10 weeks after infection to understand the effects of infection of roots by M. incognita. Gene expression was monitored using the Affymetrix Soybean GeneChip containing 37,500 G. max probe sets. Gene expression patterns were integrated with biochemical pathways from the Kyoto Encyclopedia of Genes and Genomes using PAICE software. Genes encoding enzymes involved in carbohydrate and cell wall metabolism, cell cycle control and plant defense were altered.ConclusionsA number of different soybean genes were identified that were differentially expressed which provided insights into the interaction between M. incognita and soybean and into the formation and maintenance of giant cells. Some of these genes may be candidates for broadening plants resistance to root-knot nematode through over-expression or silencing and require further examination.


Planta | 2007

Major differences observed in transcript profiles of blueberry during cold acclimation under field and cold room conditions

Anik L. Dhanaraj; Nadim W. Alkharouf; Hunter S. Beard; Imed B. Chouikha; Benjamin F. Matthews; Hui Wei; Rajeev Arora; Lisa J. Rowland

The plant parasitic nematode, Heterodera glycines is the major pathogen of Glycine max (soybean). H. glycines accomplish parasitism by creating a nurse cell known as the syncytium from which it feeds. The syncytium undergoes two developmental phases. The first is a parasitism phase where feeding sites are selected, initiating the development of the syncytium. During this earlier phase (1-4 days post infection), syncytia undergoing resistant and susceptible reactions appear the same. The second phase is when the resistance response becomes evident (between 4 and 6dpi) and is completed by 9dpi. Analysis of the resistant reaction of G. max genotype PI 88788 (G. max([PI 88788])) to H. glycines population NL1-RHg/HG-type 7 (H. glycines([NL1-RHg/HG-type 7])) is accomplished by laser microdissection of syncytia at 3, 6 and 9dpi. Comparative analyses are made to pericycle and their neighboring cells isolated from mock-inoculated roots. These analyses reveal induced levels of the jasmonic acid biosynthesis and 13-lipoxygenase pathways. Direct comparative analyses were also made of syncytia at 6 days post infection to those at 3dpi (base line). The comparative analyses were done to identify localized gene expression that characterizes the resistance phase of the resistant reaction. The most highly induced pathways include components of jasmonic acid biosynthesis, 13-lipoxygenase pathway, S-adenosyl methionine pathway, phenylpropanoid biosynthesis, suberin biosynthesis, adenosylmethionine biosynthesis, ethylene biosynthesis from methionine, flavonoid biosynthesis and the methionine salvage pathway. In comparative analyses of 9dpi to 6dpi (base line), these pathways, along with coumarin biosynthesis, cellulose biosynthesis and homogalacturonan degradation are induced. The experiments presented here strongly implicate the jasmonic acid defense pathway as a factor involved in the localized resistant reaction of G. max([PI 88788]) to H. glycines([NL1-RHg/HG-type 7]).


Plant Physiology | 2014

Floral Transcriptomes in Woodland Strawberry Uncover Developing Receptacle and Anther Gene Networks

Courtney A. Hollender; Chunying Kang; Omar Darwish; Aviva Geretz; Benjamin F. Matthews; Janet P. Slovin; Nadim W. Alkharouf; Zhongchi Liu

Our laboratory has been working toward increasing our understanding of the genetic control of cold hardiness in blueberry (Vaccinium section Cyanococcus) to ultimately use this information to develop more cold hardy cultivars for the industry. Here, we report using cDNA microarrays to monitor changes in gene expression at multiple times during cold acclimation under field and cold room conditions. Microarrays contained over 2,500 cDNA inserts, approximately half of which had been picked and single-pass sequenced from each of two cDNA libraries that were constructed from cold acclimated floral buds and non-acclimated floral buds of the fairly cold hardy cv. Bluecrop (Vaccinium corymbosum L.). Two biological samples were examined at each time point. Microarray data were analyzed statistically using t tests, ANOVA, clustering algorithms, and online analytical processing (OLAP). Interestingly, more transcripts were found to be upregulated under cold room conditions than under field conditions. Many of the genes induced only under cold room conditions could be divided into three major types: (1) genes associated with stress tolerance; (2) those that encode glycolytic and TCA cycle enzymes, and (3) those associated with protein synthesis machinery. A few of the genes induced only under field conditions appear to be related to light stress. Possible explanations for these differences are discussed in physiological context. Although many similarities exist in how plants respond during cold acclimation in the cold room and in the field environment, there are major differences suggesting caution should be taken in interpreting results based only on artificial, cold room conditions.


Nucleic Acids Research | 2004

SGMD: the Soybean Genomics and Microarray Database

Nadim W. Alkharouf; Benjamin F. Matthews

Genome-wide gene expression analyses in strawberry flowers identified key regulatory genes of the developing receptacle and anthers. Flowers are reproductive organs and precursors to fruits and seeds. While the basic tenets of the ABCE model of flower development are conserved in angiosperms, different flowering plants exhibit different and sometimes unique characteristics. A distinct feature of strawberry (Fragaria spp.) flowers is the development of several hundreds of individual apocarpous (unfused) carpels. These individual carpels are arranged in a spiral pattern on the subtending stem tip, the receptacle. Therefore, the receptacle is an integral part of the strawberry flower and is of significant agronomic importance, being the precursor to strawberry fruit. Taking advantage of next-generation sequencing and laser capture microdissection, we generated different tissue- and stage-transcriptomic profiling of woodland strawberry (Fragaria vesca) flower development. Using pairwise comparisons and weighted gene coexpression network analysis, we identified modules of coexpressed genes and hub genes of tissue-specific networks. Of particular importance is the discovery of a developing receptacle-specific module exhibiting similar molecular features to those of young floral meristems. The strawberry homologs of a number of meristem regulators, including LOST MERISTEM and WUSCHEL, are identified as hub genes operating in the developing receptacle network. Furthermore, almost 25% of the F-box genes in the genome are transiently induced in developing anthers at the meiosis stage, indicating active protein degradation. Together, this work provides important insights into the molecular networks underlying strawberry’s unique reproductive developmental processes. This extensive floral transcriptome data set is publicly available and can be readily queried at the project Web site, serving as an important genomic resource for the plant biology research community.


BMC Genomics | 2009

Population-specific gene expression in the plant pathogenic nematode Heterodera glycines exists prior to infection and during the onset of a resistant or susceptible reaction in the roots of the Glycine max genotype Peking.

Vincent P. Klink; Parsa Hosseini; Margaret H. MacDonald; Nadim W. Alkharouf; Benjamin F. Matthews

The Soybean Genomics and Microarray Database (SGMD) attempts to provide an integrated view of the interaction of soybean with the soybean cyst nematode and contains genomic, EST and microarray data with embedded analytical tools allowing correlation of soybean ESTs with their gene expression profiles. SGMD provides analytical tools to mine the microarray data quickly by integrating many analysis methods within the database itself. The expression profiles of genes at time intervals during the first 8 days of nematode invasion is searchable by gene name or GenBank accession number. Recent developments include the addition of a searchable database for soybean cyst nematode ESTs and photographs of the invasion process at time points examined using microarrays. SGMD is completely accessible from the web at: http://psi081.ba.ars.usda.gov/SGMD/default.htm.

Collaboration


Dive into the Nadim W. Alkharouf's collaboration.

Top Co-Authors

Avatar

Benjamin F. Matthews

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincent P. Klink

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Margaret H. MacDonald

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Shuxian Li

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Arianne Tremblay

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hunter S. Beard

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Lisa J. Rowland

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge