Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nadine Biedenkopf is active.

Publication


Featured researches published by Nadine Biedenkopf.


The New England Journal of Medicine | 2016

Phase 1 Trials of rVSV Ebola Vaccine in Africa and Europe.

Angela Huttner; Patricia Njuguna; Christine Dahlke; Sabine Yerly; V. Kraehling; Rahel Kasonta; Marcus Altfeld; Floriane Auderset; Nadine Biedenkopf; S. Borregaard; R. Burrow; Christophe Combescure; Jules Alexandre Desmeules; Markus Eickmann; Axel Finckh; Jay W. Hooper; A. Jambrecina; Kabwende Al; Gürkan Kaya; Domtila Kimani; Bertrand Lell; Barbara Lemaître; Marguerite Massinga-Loembe; Alain Matthey; A. Nolting; Caroline Ogwang; Michael Ramharter; Jonas Schmidt-Chanasit; Stefan Schmiedel; Peter Silvera

BACKGROUND The replication-competent recombinant vesicular stomatitis virus (rVSV)-based vaccine expressing a Zaire ebolavirus (ZEBOV) glycoprotein was selected for rapid safety and immunogenicity testing before its use in West Africa. METHODS We performed three open-label, dose-escalation phase 1 trials and one randomized, double-blind, controlled phase 1 trial to assess the safety, side-effect profile, and immunogenicity of rVSV-ZEBOV at various doses in 158 healthy adults in Europe and Africa. All participants were injected with doses of vaccine ranging from 300,000 to 50 million plaque-forming units (PFU) or placebo. RESULTS No serious vaccine-related adverse events were reported. Mild-to-moderate early-onset reactogenicity was frequent but transient (median, 1 day). Fever was observed in up to 30% of vaccinees. Vaccine viremia was detected within 3 days in 123 of the 130 participants (95%) receiving 3 million PFU or more; rVSV was not detected in saliva or urine. In the second week after injection, arthritis affecting one to four joints developed in 11 of 51 participants (22%) in Geneva, with pain lasting a median of 8 days (interquartile range, 4 to 87); 2 self-limited cases occurred in 60 participants (3%) in Hamburg, Germany, and Kilifi, Kenya. The virus was identified in one synovial-fluid aspirate and in skin vesicles of 2 other vaccinees, showing peripheral viral replication in the second week after immunization. ZEBOV-glycoprotein-specific antibody responses were detected in all the participants, with similar glycoprotein-binding antibody titers but significantly higher neutralizing antibody titers at higher doses. Glycoprotein-binding antibody titers were sustained through 180 days in all participants. CONCLUSIONS In these studies, rVSV-ZEBOV was reactogenic but immunogenic after a single dose and warrants further evaluation for safety and efficacy. (Funded by the Wellcome Trust and others; ClinicalTrials.gov numbers, NCT02283099, NCT02287480, and NCT02296983; Pan African Clinical Trials Registry number, PACTR201411000919191.).


The New England Journal of Medicine | 2016

A Monovalent Chimpanzee Adenovirus Ebola Vaccine Boosted with MVA

Katie Ewer; Tommy Rampling; Navin Venkatraman; Georgina Bowyer; Danny Wright; Teresa Lambe; Egeruan B. Imoukhuede; Ruth O. Payne; Sarah Katharina Fehling; Thomas Strecker; Nadine Biedenkopf; Verena Krähling; Claire M. Tully; Nick J. Edwards; Emma Bentley; Dhan Samuel; Geneviève M. Labbé; Jing Jin; Malick Gibani; A. Minhinnick; M. Wilkie; Ian D. Poulton; N. Lella; Rachel Roberts; Felicity Hartnell; Carly M. Bliss; Kailan Sierra-Davidson; Jonathan Powlson; Eleanor Berrie; Richard S Tedder

BACKGROUND The West African outbreak of Ebola virus disease that peaked in 2014 has caused more than 11,000 deaths. The development of an effective Ebola vaccine is a priority for control of a future outbreak. METHODS In this phase 1 study, we administered a single dose of the chimpanzee adenovirus 3 (ChAd3) vaccine encoding the surface glycoprotein of Zaire ebolavirus (ZEBOV) to 60 healthy adult volunteers in Oxford, United Kingdom. The vaccine was administered in three dose levels--1×10(10) viral particles, 2.5×10(10) viral particles, and 5×10(10) viral particles--with 20 participants in each group. We then assessed the effect of adding a booster dose of a modified vaccinia Ankara (MVA) strain, encoding the same Ebola virus glycoprotein, in 30 of the 60 participants and evaluated a reduced prime-boost interval in another 16 participants. We also compared antibody responses to inactivated whole Ebola virus virions and neutralizing antibody activity with those observed in phase 1 studies of a recombinant vesicular stomatitis virus-based vaccine expressing a ZEBOV glycoprotein (rVSV-ZEBOV) to determine relative potency and assess durability. RESULTS No safety concerns were identified at any of the dose levels studied. Four weeks after immunization with the ChAd3 vaccine, ZEBOV-specific antibody responses were similar to those induced by rVSV-ZEBOV vaccination, with a geometric mean titer of 752 and 921, respectively. ZEBOV neutralization activity was also similar with the two vaccines (geometric mean titer, 14.9 and 22.2, respectively). Boosting with the MVA vector increased virus-specific antibodies by a factor of 12 (geometric mean titer, 9007) and increased glycoprotein-specific CD8+ T cells by a factor of 5. Significant increases in neutralizing antibodies were seen after boosting in all 30 participants (geometric mean titer, 139; P<0.001). Virus-specific antibody responses in participants primed with ChAd3 remained positive 6 months after vaccination (geometric mean titer, 758) but were significantly higher in those who had received the MVA booster (geometric mean titer, 1750; P<0.001). CONCLUSIONS The ChAd3 vaccine boosted with MVA elicited B-cell and T-cell immune responses to ZEBOV that were superior to those induced by the ChAd3 vaccine alone. (Funded by the Wellcome Trust and others; ClinicalTrials.gov number, NCT02240875.).


The Journal of Infectious Diseases | 2011

Ebola Virus Enters Host Cells by Macropinocytosis and Clathrin-Mediated Endocytosis

Paulina Aleksandrowicz; Andrea Marzi; Nadine Biedenkopf; Nadine Beimforde; Stephan Becker; Thomas Hoenen; Heinz Feldmann; Hans-Joachim Schnittler

Virus entry into host cells is the first step of infection and a crucial determinant of pathogenicity. Here we show that Ebola virus-like particles (EBOV-VLPs) composed of the glycoprotein GP(1,2) and the matrix protein VP40 use macropinocytosis and clathrin-mediated endocytosis to enter cells. EBOV-VLPs applied to host cells induced actin-driven ruffling and enhanced FITC-dextran uptake, which indicated macropinocytosis as the main entry mechanism. This was further supported by inhibition of entry through inhibitors of actin polymerization (latrunculin A), Na(+)/H(+)-exchanger (EIPA), and PI3-kinase (wortmannin). A fraction of EBOV-VLPs, however, colocalized with clathrin heavy chain (CHC), and VLP uptake was reduced by CHC small interfering RNA transfection and expression of the dominant negative dynamin II-K44A mutant. In contrast, we found no evidence that EBOV-VLPs enter cells via caveolae. This work identifies macropinocytosis as the major, and clathrin-dependent endocytosis as an alternative, entry route for EBOV particles. Therefore, EBOV seems to utilize different entry pathways depending on both cell type and virus particle size.


Journal of Virology | 2010

Oligomerization of Ebola Virus VP40 Is Essential for Particle Morphogenesis and Regulation of Viral Transcription

Thomas Hoenen; Nadine Biedenkopf; Florian Zielecki; S. Jung; Allison Groseth; Heinz Feldmann; Stephan Becker

ABSTRACT The morphogenesis and budding of virus particles represent an important stage in the life cycle of viruses. For Ebola virus, this process is driven by its major matrix protein, VP40. Like the matrix proteins of many other nonsegmented, negative-strand RNA viruses, VP40 has been demonstrated to oligomerize and to occur in at least two distinct oligomeric states: hexamers and octamers, which are composed of antiparallel dimers. While it has been shown that VP40 oligomers are essential for the viral life cycle, their function is completely unknown. Here we have identified two amino acids essential for oligomerization of VP40, the mutation of which blocked virus-like particle production. Consistent with this observation, oligomerization-deficient VP40 also showed impaired intracellular transport to budding sites and reduced binding to cellular membranes. However, other biological functions, such as the interaction of VP40 with the nucleoprotein, NP, remained undisturbed. Furthermore, both wild-type VP40 and oligomerization-deficient VP40 were found to negatively regulate viral genome replication, a novel function of VP40, which we have recently reported. Interestingly, while wild-type VP40 was also able to negatively regulate viral genome transcription, oligomerization-deficient VP40 was no longer able to fulfill this function, indicating that regulation of viral replication and transcription by VP40 are mechanistically distinct processes. These data indicate that VP40 oligomerization not only is a prerequisite for intracellular transport of VP40 and efficient membrane binding, and as a consequence virion morphogenesis, but also plays a critical role in the regulation of viral transcription by VP40.


Journal of Virology | 2008

Role of Ebola Virus VP30 in Transcription Reinitiation

Miguel J. Martinez; Nadine Biedenkopf; Valentina A. Volchkova; Bettina Hartlieb; Nathalie Alazard-Dany; Olivier Reynard; Stephan Becker; Viktor E. Volchkov

ABSTRACT VP30 is a phosphoprotein essential for the initiation of Ebola virus transcription. In this work, we have studied the effect of mutations in VP30 phosphorylation sites on the ebolavirus replication cycle by using a reverse genetics system. We demonstrate that VP30 is involved in reinitiation of gene transcription and that this activity is affected by mutations at the phosphorylation sites.


Journal of Biological Chemistry | 2013

Phosphorylation of Ebola Virus VP30 Influences the Composition of the Viral Nucleocapsid Complex IMPACT ON VIRAL TRANSCRIPTION AND REPLICATION

Nadine Biedenkopf; Bettina Hartlieb; Thomas Hoenen; Stephan Becker

Background: Ebola virus VP30 is an essential transcription factor dispensable for viral replication whose activity is regulated via phosphorylation. Results: Phosphorylation of VP30 impacts viral transcription and replication by modulating interaction with the nucleocapsid proteins VP35 and NP. Conclusion: VP30 phosphorylation influences the composition of the viral polymerase complex via phosphorylation-dependent interaction with VP35. Significance: VP30 phosphorylation status modulates both viral transcription and replication. Ebola virus is a non-segmented negative-sense RNA virus causing severe hemorrhagic fever with high fatality rates in humans and nonhuman primates. For transcription of the viral genome four viral proteins are essential: the nucleoprotein NP, the polymerase L, the polymerase cofactor VP35, and VP30. VP30 represents an essential Ebola virus-specific transcription factor whose activity is regulated via its phosphorylation state. In contrast to viral transcription, VP30 is not required for viral replication. Using a minigenome assay, we show that phosphorylation of VP30 inhibits viral transcription while viral replication is increased. Concurrently, phosphorylation of VP30 reciprocally regulates a newly described interaction of VP30 with VP35, and strengthens the interaction with NP. Our results indicate a critical role of VP30 phosphorylation for viral transcription and replication, suggesting a mechanism by which VP30 phosphorylation modulates the composition of the viral polymerase complex presumably forming a transcriptase in the presence of non-phosphorylated VP30 or a replicase in the presence of phosphorylated VP30.


The Journal of Infectious Diseases | 2015

Analysis of Ebola Virus Entry Into Macrophages

Franziska Dahlmann; Nadine Biedenkopf; Anne Babler; Willi Jahnen-Dechent; Christina B. Karsten; Kerstin Gnirß; Heike Schneider; Florian Wrensch; Christopher A. O'Callaghan; Stephanie Bertram; Georg Herrler; Stephan Becker; Stefan Pöhlmann; Heike Hofmann-Winkler

Abstract Ebolaviruses constitute a public health threat, particularly in Central and Western Africa. Host cell factors required for spread of ebolaviruses may serve as targets for antiviral intervention. Lectins, TAM receptor tyrosine kinases (Tyro3, Axl, Mer), T cell immunoglobulin and mucin domain (TIM) proteins, integrins, and Niemann-Pick C1 (NPC1) have been reported to promote entry of ebolaviruses into certain cellular systems. However, the factors used by ebolaviruses to invade macrophages, major viral targets, are poorly defined. Here, we show that mannose-specific lectins, TIM-1 and Axl augment entry into certain cell lines but do not contribute to Ebola virus (EBOV)-glycoprotein (GP)–driven transduction of macrophages. In contrast, expression of Mer, integrin αV, and NPC1 was required for efficient GP-mediated transduction and EBOV infection of macrophages. These results define cellular factors hijacked by EBOV for entry into macrophages and, considering that Mer and integrin αV promote phagocytosis of apoptotic cells, support the concept that EBOV relies on apoptotic mimicry to invade target cells.


Journal of Virology | 2016

Dynamic Phosphorylation of VP30 Is Essential for Ebola Virus Life Cycle

Nadine Biedenkopf; Clemens Lier; Stephan Becker

ABSTRACT Ebola virus is the causative agent of a severe fever with high fatality rates in humans and nonhuman primates. The regulation of Ebola virus transcription and replication currently is not well understood. An important factor regulating viral transcription is VP30, an Ebola virus-specific transcription factor associated with the viral nucleocapsid. Previous studies revealed that the phosphorylation status of VP30 impacts viral transcription. Together with NP, L, and the polymerase cofactor VP35, nonphosphorylated VP30 supports viral transcription. Upon VP30 phosphorylation, viral transcription ceases. Phosphorylation weakens the interaction between VP30 and the polymerase cofactor VP35 and/or the viral RNA. VP30 thereby is excluded from the viral transcription complex, simultaneously leading to increased viral replication which is supported by NP, L, and VP35 alone. Here, we use an infectious virus-like particle assay and recombinant viruses to show that the dynamic phosphorylation of VP30 is critical for the cotransport of VP30 with nucleocapsids to the sites of viral RNA synthesis, where VP30 is required to initiate primary viral transcription. We further demonstrate that a single serine residue at amino acid position 29 was sufficient to render VP30 active in primary transcription and to generate a recombinant virus with characteristics comparable to those of wild-type virus. In contrast, the rescue of a recombinant virus with a single serine at position 30 in VP30 was unsuccessful. Our results indicate critical roles for phosphorylated and dephosphorylated VP30 during the viral life cycle. IMPORTANCE The current Ebola virus outbreak in West Africa has caused more than 28,000 cases and 11,000 fatalities. Very little is known regarding the molecular mechanisms of how the Ebola virus transcribes and replicates its genome. Previous investigations showed that the transcriptional support activity of VP30 is activated upon VP30 dephosphorylation. The current study reveals that the situation is more complex and that primary transcription as well as the rescue of recombinant Ebola virus also requires the transient phosphorylation of VP30. VP30 encodes six N-proximal serine residues that serve as phosphorylation acceptor sites. The present study shows that the dynamic phosphorylation of serine at position 29 alone is sufficient to activate primary viral transcription. Our results indicate a series of phosphorylation/dephosphorylation events that trigger binding to and release from the nucleocapsid and transcription complex to be essential for the full activity of VP30.


Journal of Virology | 2016

RNA Binding of Ebola Virus VP30 Is Essential for Activating Viral Transcription

Nadine Biedenkopf; Julia Schlereth; Arnold Grünweller; Stephan Becker; Roland K. Hartmann

ABSTRACT The template for Ebola virus (EBOV) transcription and replication is the helical viral nucleocapsid composed of the viral negative-sense (−) RNA genome, which is complexed by the nucleoprotein (NP), VP35, polymerase L, VP24, and VP30. While viral replication is exerted by polymerase L and its cofactor VP35, EBOV mRNA synthesis is regulated by the viral nucleocapsid protein VP30, an essential EBOV-specific transcription factor. VP30 is a homohexameric phosphoprotein containing a nonconventional zinc finger. The transcriptional support activity of VP30 is strongly influenced by its phosphorylation state. We studied here how RNA binding contributed to VP30s function in transcriptional activation. Using a novel mobility shift assay and the 3′-terminal 154 nucleotides of the EBOV genome as a standard RNA substrate, we detected that RNA binding of VP30 was severely impaired by VP30 mutations that (i) destroy the proteins capability to form homohexamers, (ii) disrupt the integrity of its zinc finger domain, (iii) mimic its fully phosphorylated state, or (iv) alter the putative RNA binding region. RNA binding of the mutant VP30 proteins correlated strongly with their transcriptional support activity. Furthermore, we showed that the interaction between VP30 and the polymerase cofactor VP35 is RNA dependent, while formation of VP30 homohexamers and VP35 homotetramers is not. Our data indicate that RNA binding of VP30 is essential for its transcriptional support activity and stabilizes complexes of VP35/L polymerase with the (−) RNA template to favor productive transcriptional initiation in the presence of termination-active RNA secondary structures. IMPORTANCE Ebola virus causes severe fevers with unusually high case fatality rates. The recent outbreak of Ebola virus in West Africa claimed more than 11,000 lives and threatened to destabilize a whole region because of its dramatic effects on the public health systems. It is currently not completely understood how Ebola virus manages to balance viral transcription and replication in the infected cells. This study shows that transcriptional support activity of the Ebola virus transcription factor VP30 is highly correlated with its ability to bind viral RNA. The interaction between VP30 and VP35, the Ebola virus polymerase cofactor, is dependent on the presence of RNA as well. Our data contribute to the understanding of the dynamic interplay between nucleocapsid proteins and the viral RNA template in order to promote viral RNA synthesis.


The Journal of Infectious Diseases | 2015

Transport of Ebolavirus Nucleocapsids Is Dependent on Actin Polymerization: Live-Cell Imaging Analysis of Ebolavirus-Infected Cells

Gordian Schudt; Olga Dolnik; Larissa Kolesnikova; Nadine Biedenkopf; Astrid Herwig; Stephan Becker

BACKGROUND Transport of ebolavirus (EBOV) nucleocapsids from perinuclear viral inclusions, where they are formed, to the site of budding at the plasma membrane represents an obligatory step of virus assembly. Until now, no live-cell studies on EBOV nucleocapsid transport have been performed, and participation of host cellular factors in this process, as well as the trajectories and speed of nucleocapsid transport, remain unknown. METHODS Live-cell imaging of EBOV-infected cells treated with different inhibitors of cellular cytoskeleton was used for the identification of cellular proteins involved in the nucleocapsid transport. EBOV nucleocapsids were visualized by expression of green fluorescent protein (GFP)-labeled nucleocapsid viral protein 30 (VP30) in EBOV-infected cells. RESULTS Incorporation of the fusion protein VP30-GFP into EBOV nucleocapsids was confirmed by Western blot and indirect immunofluorescence analyses. Importantly, VP30-GFP fluorescence was readily detectable in the densely packed nucleocapsids inside perinuclear viral inclusions and in the dispersed rod-like nucleocapsids located outside of viral inclusions. Live-cell imaging of EBOV-infected cells revealed exit of single nucleocapsids from the viral inclusions and their intricate transport within the cytoplasm before budding at the plasma membrane. Nucleocapsid transport was arrested upon depolymerization of actin filaments (F-actin) and inhibition of the actin-nucleating Arp2/3 complex, and it was not altered upon depolymerization of microtubules or inhibition of N-WASP. Actin comet tails were often detected at the rear end of nucleocapsids. Marginally located nucleocapsids entered filopodia, moved inside, and budded from the tip of these thin cellular protrusions. CONCLUSIONS Live-cell imaging of EBOV-infected cells revealed actin-dependent long-distance transport of EBOV nucleocapsids before budding at the cell surface. These findings provide useful insights into EBOV assembly and have potential application in the development of antivirals.

Collaboration


Dive into the Nadine Biedenkopf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Hoenen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge