Nadine Botteldoorn
Flemish Government
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nadine Botteldoorn.
Journal of Applied Microbiology | 2003
Nadine Botteldoorn; Marc Heyndrickx; Nancy Rijpens; K. Grijspeerdt; Lieve Herman
Aims: The purpose of this study was to investigate the prevalence of Salmonella in pigs at the moment of slaughter and in the slaughterhouse environment.
Applied and Environmental Microbiology | 2004
Nadine Botteldoorn; Lieve Herman; Nancy Rijpens; Marc Heyndrickx
ABSTRACT This study aimed to define the origin of Salmonella contamination on swine carcasses and the distribution of Salmonella serotypes in two commercial slaughterhouses during normal activity. Salmonellae were isolated from carcasses, from colons and mesenteric lymph nodes of individual pigs, and from the slaughterhouse environment. All strains were serotyped; Salmonella enterica serotype Typhimurium and Salmonella enterica serotype Derby isolates were additionally typed beyond the serotype level by pulsed-field gel electrophoresis (PFGE) and antibiotic resistance profiling (ARP); and a subset of 31 serotype Typhimurium strains were additionally phage typed. PFGE and ARP had the same discriminative possibility. Phage typing in combination with PFGE could give extra information for some strains. In one slaughterhouse, 21% of the carcasses were contaminated, reflecting a correlation with the delivery of infected pigs. Carcass contamination did not result only from infection of the corresponding pig; only 25% of the positive carcasses were contaminated with the same serotype or genotype found in the corresponding feces or mesenteric lymph nodes. In the other slaughterhouse, 70% of the carcasses were contaminated, and only in 4% was the same genotype or serotype detected as in the feces of the corresponding pigs. The other positive carcasses in both slaughterhouses were contaminated by genotypes present in the feces or lymph nodes of pigs slaughtered earlier that day or from dispersed sources in the environment. In slaughterhouses, complex contamination cycles may be present, resulting in the isolation of many different genotypes circulating in the environment due to the supply of positive animals and in the contamination of carcasses, probably through aerosols.
Virology Journal | 2011
Elisabeth Mathijs; Sarah Denayer; Leonor Palmeira; Nadine Botteldoorn; Alexandra Scipioni; Alain Vanderplasschen; Etienne Thiry; Katelijne Dierick
BackgroundNoroviruses (NoVs) are an important cause of acute gastroenteritis in humans worldwide. To gain insight into the epidemiologic patterns of NoV outbreaks and to determine the genetic variation of NoVs strains circulating in Belgium, stool samples originating from patients infected with NoVs in foodborne outbreak investigations were analysed between December 2006 and December 2010.ResultsNoVs were found responsible of 11.8% of all suspected foodborne outbreaks reported in the last 4 years and the number of NoV outbreaks reported increased along the years representing more than 30% of all foodborne outbreaks in 2010. Genogroup II outbreaks largely predominated and represented more than 90% of all outbreaks. Phylogenetic analyses were performed with 63 NoV-positive samples for the partial polymerase (N = 45) and/or capsid gene (N = 35) sequences. For 12 samples, sequences covering the ORF1-ORF2 junction were obtained. A variety of genotypes was found among genogroups I and II; GII.4 was predominant followed in order of importance by GII.2, GII.7, GII.13, GI.4 and GI.7. In the study period, GII.4 NoVs variants 2006a, 2006b, 2007, 2008 and 2010 were identified. Moreover, phylogenetic analyses identified different recombinant NoV strains that were further characterised as intergenotype (GII.e/GII.4 2007, GII.e/GII.3 and GII.g/GII.1) and intersub-genotype (GII.4 2006b/GII.4 2007 and GII.4 2010/GII.4 2010b) recombinants.ConclusionsNoVs circulating in the last 4 years in Belgium showed remarkable genetic diversity either by small-scale mutations or genetic recombination. In this period, GII.4 2006b was successfully displaced by the GII.4 2010 subtype, and previously reported epidemic GII.b recombinants seemed to have been superseded by GII.e recombinants in 2009 and GII.g recombinants in 2010. This study showed that the emergence of novel GII.4 variants together with novel GII recombinants could lead to an explosion in NoV outbreaks, likewise to what was observed in 2008 and 2010. Among recombinants detected in this study, two hitherto unreported strains GII.e/GII.3 and GII.g/GII.1 were characterised. Surveillance will remain important to monitor contemporaneously circulating strains in order to adapt preventive and curative strategies.
Journal of Virological Methods | 2009
Ambroos Stals; Leen Baert; Nadine Botteldoorn; Hadewig Werbrouck; Lieve Herman; Mieke Uyttendaele; Els Van Coillie
A quantitative two-step multiplex real-time reverse transcriptase (RT-) PCR assay for the simultaneous detection of genogroup I (GI) and genogroup II (GII) noroviruses (NoVs) is described below. A murine norovirus 1 (MNV-1) real-time PCR detection assay described recently was integrated successfully into the multiplex assay, making it possible to detect GI and GII NoVs and MNV-1 in one reaction tube with MNV-1 plasmid DNA as real-time PCR internal amplification control (IAC). The results showed a nearly complete concordance between the multiplex assay and the corresponding single-target PCRs. Analysis of competition between the individual reactions within the multiplex real-time PCR assay showed that GI and GII NoV plasmid DNAs mixed at equimolar concentrations were detected reproducibly and quantitatively, while a 4 log excess between GI and GII plasmid DNAs hindered amplification of the target with the lowest concentration. High concentrations of the real-time PCR IAC (MNV-1 plasmid DNA) also interfered with the possibility of the developed multiplex real-time RT-PCR assay to detect quantitatively and simultaneously the presence of GI and GII NoVs within one sample. The specificity of the multiplex assay was evaluated by testing a NoV RNA reference panel containing nine GI, eight GII, and one GIV in vitro synthesized RNA fragment, plus 16 clinical samples found positive for GI and GII NoVs previously. In addition, a collection of bovine NoVs and other (non-NoV) enteric viruses were found to be negative, and no cross-amplification between genogroups was observed.
Epidemiology and Infection | 2009
Leen Baert; Mieke Uyttendaele; Ambroos Stals; E. Van Coillie; Katelijne Dierick; Johan Debevere; Nadine Botteldoorn
The Belgian data for foodborne norovirus (NoV) outbreaks became available for the first time with the introduction of an extraction and detection protocol for NoV in the National Reference Laboratory for foodborne outbreaks in September 2006. In 2007, 10 NoV foodborne outbreaks were reported affecting 392 persons in Belgium. NoV became the most detected agent in foodborne outbreaks followed by Salmonella (eight foodborne outbreaks). The major implicated foods were sandwiches (4/10), where food handlers reported a history of gastroenteritis in two outbreaks. A food handler was implicated in the limited number of Belgian NoV outbreaks which is in accord with internationally recorded data. Forty foodborne and waterborne outbreak events due to NoV, epidemiological and/or laboratory confirmed, from 2000 to 2007 revealed that in 42.5% of the cases the food handler was responsible for the outbreak, followed by water (27.5%), bivalve shellfish (17.5%) and raspberries (10.0%).
Journal of Applied Microbiology | 2006
E. Van Coillie; J. Goris; Ilse Cleenwerck; Koen Grijspeerdt; Nadine Botteldoorn; F. Van Immerseel; J. De Buck; M. Vancanneyt; Jean Swings; Lieve Herman; Marc Heyndrickx
Aims: To select Lactobacillus strains from laying hens for potential use as probiotic to control Salmonella Enteritidis infection.
Applied and Environmental Microbiology | 2006
Hadewig Werbrouck; K. Grijspeerdt; Nadine Botteldoorn; Els Van Pamel; Nancy Rijpens; Jo Van Damme; Mieke Uyttendaele; Lieve Herman; Els Van Coillie
ABSTRACT In this study, a number of Listeria monocytogenes strains of different origins were evaluated for in vitro invasion capacity for various human cell types (monocytic THP-1, enterocytic Caco-2, and hepatocytic HepG2 cells) and for expression levels of specific virulence genes. For THP-1 cells, no differences between clinical and nonclinical L. monocytogenes strains in invasion capacity or in production of the proinflammatory cytokine interleukin-8 (IL-8) were observed, whereas for the Caco-2 and HepG2 cells, significant differences in invasion capacity were noticed. On average, the clinical strains showed a significantly lower invasion capacity than the nonclinical L. monocytogenes strains. Furthermore, it was shown that the clinical strains induce lower IL-8 levels in HepG2 cells than do the nonclinical strains. This observation led us to study the mRNA expression levels of inlA, inlB, and ami, important virulence genes mediating adhesion and invasion of eukaryotic cells, by real-time reverse transcription-PCR for 27 clinical and 37 nonclinical L. monocytogenes strains. Significant differences in inlA and inlB expression were observed, with clinical strains showing a lower expression level than nonclinical strains. These observations were in accordance with in vitro invasion of Caco-2 and HepG2 cells, respectively. The results of this study indicate that differential expression levels of inlA and inlB possibly play a role in the virulence capacities of L. monocytogenes strains. The lower capacity of clinical strains to invade HepG2 cells and to induce IL-8 is possibly a mechanism of immune evasion used by specific L. monocytogenes strains.
Food and Environmental Virology | 2012
Elisabeth Mathijs; Ambroos Stals; Leen Baert; Nadine Botteldoorn; Sarah Denayer; Axel Mauroy; Alexandra Scipioni; Georges Daube; Katelijne Dierick; Lieve Herman; Els Van Coillie; Mieke Uyttendaele; Etienne Thiry
Human noroviruses (NoVs) are considered a worldwide leading cause of acute non-bacterial gastroenteritis. Due to a combination of prolonged shedding of high virus levels in feces, virus particle shedding during asymptomatic infections, and a high environmental persistence, NoVs are easily transmitted pathogens. Norovirus (NoV) outbreaks have often been reported and tend to affect a lot of people. NoV is spread via feces and vomit, but this NoV spread can occur through several transmission routes. While person-to-person transmission is without a doubt the dominant transmission route, human infective NoV outbreaks are often initiated by contaminated food or water. Zoonotic transmission of NoV has been investigated, but has thus far not been demonstrated. The presented review aims to give an overview of these NoV transmission routes. Regarding NoV person-to-person transmission, the NoV GII.4 genotype is discussed in the current review as it has been very successful for several decades but reasons for its success have only recently been suggested. Both pre-harvest and post-harvest contamination of food products can lead to NoV food borne illness. Pre-harvest contamination of food products mainly occurs via contact with polluted irrigation water in case of fresh produce or with contaminated harvesting water in case of bivalve molluscan shellfish. On the other hand, an infected food handler is considered as a major cause of post-harvest contamination of food products. Both transmission routes are reviewed by a summary of described NoV food borne outbreaks between 2000 and 2010. A third NoV transmission route occurs via water and the spread of NoV via river water, ground water, and surface water is reviewed. Finally, although zoonotic transmission remains hypothetical, a summary on the bovine and porcine NoV presence observed in animals is given and the presence of human infective NoV in animals is discussed.
International Journal of Food Microbiology | 2009
Vicky Jasson; Imca Sampers; Nadine Botteldoorn; Francisco López-Gálvez; Leen Baert; Sarah Denayer; Andreja Rajkovic; Ihab Habib; Lieven De Zutter; Johan Debevere; Mieke Uyttendaele
A comparative study examining Bolton broth and Preston broth for enrichment and reliable detection of Campylobacter jejuni (both healthy and freeze stressed cells) was performed. Tested as pure cultures, Bolton broth enabled faster resuscitation and growth of C. jejuni compared to Preston broth. When C. jejuni was co-incubated with extended-spectrum-beta-lactamase (ESBL) producing Escherichia coli isolated from Belgian poultry meat preparations, the latter dominated in the Bolton enrichment broth and crowded the mCCDA plates. This resulted in the inability to recover C. jejuni by ISO 10272-1:2006 standard method. Preston broth did not support the growth of the ESBL E. coli isolates, but showed longer detection time of C. jejuni compared to Bolton broth. The use of the same antibiotic (sodium cefoperazone) in Bolton broth and in mCCDA plates may explain the problems encountered for detection of C. jejuni, as high numbers of ESBL E. coli present after enrichment in Bolton broth, also caused overgrowth and masked the few C. jejuni colonies present on the mCCDA plates. The use of Campylobacter spp. specific real-time PCR circumvented these problems and enabled rapid detection of the pathogen after 24h enrichment in both Bolton and Preston broth, for both healthy and freeze stressed cells.
Research in Microbiology | 2003
Nadine Botteldoorn; Marc Heyndrickx; Nancy Rijpens; Lieve Herman
To determine whether pigs and pig carcasses are a reservoir of verotoxigenic-producing Escherichia coli, a sensitive and rapid isolation method was developed. A VTEC/EHEC multiplex PCR method was developed to test all samples taken at the farm (n=289) and at the slaughterhouse (n=233). From the 137 positive VTEC/EHEC multiplex PCR farm samples, 54 strains were isolated that carried one virulence gene. Of these, thirty-one strains carried the vt2e variant of the vt2 gene, which causes oedemic disease in young pigs, four strains contained the hlyA gene and 19 the eaeA gene. All strains isolated were further identified with an enterotoxigenic E. coli (ETEC) multiplex PCR developed to detect the LTI, STIa, STII and vt2 genes in a single reaction. One-third of the vt2e-positive strains also contained the STIa gene. A small fraction of the 132 carcasses tested were found positive for VTEC or the E. coli O157 serotype. We conclude that none of the isolated strains carried a combination of virulence genes indicative of potential human pathogenic characteristics.