Nadine Clerc
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nadine Clerc.
The Journal of Physiology | 2000
W. A. A. Kunze; Nadine Clerc; John B. Furness; M. Gola
1 Intrinsic primary afferent neurons in the small intestine are exposed to distortion of their processes and of their cell bodies. Recordings of mechanosensitivity have previously been made from these neurons using intracellular microelectrodes, but this form of recording has not permitted detection of generator potentials from the processes, or of responses to cell body distortion. 2 We have developed a technique to record from enteric neurons in situ using patch electrodes. The mechanical stability of the patch recordings has allowed recording in cell‐attached and whole cell configuration during imposed movement of the neurons. 3 Pressing with a fine probe initiated generator potentials (14 ± 9 mV) from circumscribed regions of the neuron processes within the same myenteric ganglion, at distances from 100 to 500 μm from the cell body that was patched. Generator potentials persisted when synaptic transmission was blocked with high Mg2+, low Ca2+ solution. 4 Soma distortion, by pressing down with the whole cell recording electrode, inhibited action potential firing. Consistent with this, moderate intra‐electrode pressure (10 mbar; 1 kPa) increased the opening probability of large‐conductance (BK) potassium channels, recorded in cell‐attached mode, but suction was not effective. In outside‐out patches, suction, but not pressure, increased channel opening probability. Mechanosensitive BK channels have not been identified on other neurons. 5 The BK channels had conductances of 195 ± 25 pS. Open probability was increased by depolarization, with a half‐maximum activation at a patch potential of 20 mV and a slope factor of 10 mV. Channel activity was blocked by charybdotoxin (20 nM). 6 Stretch that increased membrane area under the electrode by 15 % was sufficient to double open probability. Similar changes in membrane area occur when the intestine changes diameter and wall tension under physiological conditions. Thus, the intestinal intrinsic primary afferent neurons are detectors of neurite distortion and of compression of the soma, these stimuli having opposite effects on neuron excitability.
The Journal of Physiology | 1999
W. A. A. Kunze; Nadine Clerc; Paul P. Bertrand; John B. Furness
1 The process by which stretch of the external muscle of the intestine leads to excitation of myenteric neurons was investigated by intracellular recording from neurons in isolated longitudinal muscle‐myenteric plexus preparations from the guinea‐pig. 2 Intestinal muscle that was stretched by 40% beyond its resting size in either the longitudinal or circular direction contracted irregularly. Both multipolar, Dogiel type II, neurons and uniaxonal neurons generated action potentials in stretched tissue. Action potentials persisted when the membrane potential was hyperpolarized by passing current through the recording electrode for 10 of 14 Dogiel type II neurons and 1 of 18 uniaxonal neurons, indicating that the action potentials originated in the processes of these neurons. For the remaining four Dogiel type II and 17 uniaxonal neurons, the action potentials were abolished, suggesting that they were the result of synaptic activation of the cell bodies. 3 Neurons did not fire action potentials when the muscle was paralysed by nicardipine (3 μm), even when the preparations were simultaneously stretched by 50% beyond resting length in longitudinal and circular directions. Spontaneous action potentials were not recorded in unstretched (slack) tissue, but when the L‐type calcium channel agonist (‐)‐Bay K 8644 (1 μm) was added, the muscle contracted and action potentials were observed in Dogiel type II neurons and uniaxonal neurons. 4 The proteolytic enzyme dispase (1 mg ml−1) added to preparations that were stretched 40% beyond slack width caused the myenteric plexus to lift away from the muscle, but did not prevent muscle contraction. In the presence of dispase, the neurons ceased firing action potentials spontaneously, although action potentials could still be evoked by intracellular current pulses. After the action of dispase, (‐)‐Bay K 8644 (1 μm) contracted the muscle but did not cause neurons to fire action potentials. 5 Gadolinium ions (1 μm), which block some stretch activated ion channels, stopped muscle contraction and prevented action potential firing in tissue stretched by 40%. However, when (‐)‐Bay K 8644 (1 μm) was added in the presence of gadolinium, the muscle again contracted and action potentials were recorded from myenteric neurons. 6 Stretching the tissue 40% beyond its slack width caused action potential firing in preparations that had been extrinsically denervated and in which time had been allowed for the cut axons to degenerate. 7 The present results lead to the following hypotheses. The neural response to stretching depends on the opening of stretch activated channels in the muscle, muscle contraction in response to this opening, and mechanical communication from the contracting muscle to myenteric neurons. Distortion of sensitive sites in the processes of the neurons opens channels to initiate action potentials that are propagated to the soma, where they are recorded. Neurons are also excited indirectly by slow synaptic transmission from neurons that respond directly to distortion.
American Journal of Physiology-gastrointestinal and Liver Physiology | 1999
John B. Furness; Wolfgang Kunze; Nadine Clerc
The lining of the gastrointestinal tract is the largest vulnerable surface that faces the external environment. Just as the other large external surface, the skin, is regarded as a sensory organ, so should the intestinal mucosa. In fact, the mucosa has three types of detectors: neurons, endocrine cells, and immune cells. The mucosa is in immediate contact with the intestinal contents so that nutrients can be efficiently absorbed, and, at the same time, it protects against the intrusion of harmful entities, such as toxins and bacteria, that may enter the digestive system with food. Signals are sent locally to control motility, secretion, tissue defense, and vascular perfusion; to other digestive organs, for example, to the stomach, gallbladder, and pancreas; and to the central nervous system, for example to influence feeding behavior. The three detecting systems in the intestine are more extensive than those of any other organ: the enteric nervous system contains on the order of 10(8) neurons, the gastroenteropancreatic endocrine system uses more than 20 identified hormones, and the gut immune system has 70- 80% of the bodys immune cells. The gastrointestinal tract has an integrated response to changes in its luminal contents. When this response is maladjusted or is overwhelmed, the consequences can be severe, as in cholera intoxication, or debilitating, as in irritable bowel syndrome. Thus it is essential to obtain a full understanding of the sensory functions of the intestine, of how the body reacts to the information, and of how neural, hormonal, and immune signals interact.The lining of the gastrointestinal tract is the largest vulnerable surface that faces the external environment. Just as the other large external surface, the skin, is regarded as a sensory organ, so should the intestinal mucosa. In fact, the mucosa has three types of detectors: neurons, endocrine cells, and immune cells. The mucosa is in immediate contact with the intestinal contents so that nutrients can be efficiently absorbed, and, at the same time, it protects against the intrusion of harmful entities, such as toxins and bacteria, that may enter the digestive system with food. Signals are sent locally to control motility, secretion, tissue defense, and vascular perfusion; to other digestive organs, for example, to the stomach, gallbladder, and pancreas; and to the central nervous system, for example to influence feeding behavior. The three detecting systems in the intestine are more extensive than those of any other organ: the enteric nervous system contains on the order of 108 neurons, the gastroenteropancreatic endocrine system uses more than 20 identified hormones, and the gut immune system has 70- 80% of the bodys immune cells. The gastrointestinal tract has an integrated response to changes in its luminal contents. When this response is maladjusted or is overwhelmed, the consequences can be severe, as in cholera intoxication, or debilitating, as in irritable bowel syndrome. Thus it is essential to obtain a full understanding of the sensory functions of the intestine, of how the body reacts to the information, and of how neural, hormonal, and immune signals interact.
The Journal of Physiology | 2002
François Rugiero; Maurice Gola; W. A. A. Kunze; Jean-Claude Reynaud; John B. Furness; Nadine Clerc
Whole‐cell patch‐clamp recordings taken from guinea‐pig duodenal myenteric neurones within intact ganglia were used to determine the properties of S and AH neurones. Major currents that determine the states of AH neurones were identified and quantified. S neurones had resting potentials of −47 ± 6 mV and input resistances (Rin) of 713 ± 49 MΩ at voltages ranging from −90 to −40 mV. At more negative levels, activation of a time‐independent, caesium‐sensitive, inward‐rectifier current (IKir) decreased Rin to 103 ± 10 MΩ. AH neurones had resting potentials of −57 ± 4 mV and Rin was 502 ± 27 MΩ. Rin fell to 194 ± 16 MΩ upon hyperpolarization. This decrease was attributable mainly to the activation of a cationic h current, Ih, and to IKir. Resting potential and Rin exhibited a low sensitivity to changes in [K+]o in both AH and S neurones. This indicates that both cells have a low background K+ permeability. The cationic current, Ih, contributed about 20 % to the resting conductance of AH neurones. It had a half‐activation voltage of −72 ± 2 mV, and a voltage sensitivity of 8.2 ± 0.7 mV per e‐fold change. Ih has relatively fast, voltage‐dependent kinetics, with on and off time constants in the range of 50–350 ms. AH neurones had a previously undescribed, low threshold, slowly inactivating, sodium‐dependent current that was poorly sensitive to TTX. In AH neurones, the post‐action‐potential slow hyperpolarizing current, IAHP, displayed large variation from cell to cell. IAHP appeared to be highly Ca2+ sensitive, since its activation with either membrane depolarization or caffeine (1 mm) was not prevented by perfusing the cell with 10 mm BAPTA. We determined the identity of the Ca2+ channels linked to IAHP. Action potentials of AH neurones that were elongated by TEA (10 mm) were similarly shortened and IAHP was suppressed with each of the three Ω‐conotoxins GVIA, MVIIA and MVIIC (0.3–0.5 μm), but not with Ω‐agatoxin IVA (0.2 μm). There was no additivity between the effects of the three conotoxins, which indicates the presence of N‐ but not of P/Q‐type Ca2+ channels. A residual Ca2+ current, resistant to all toxins, but blocked by 0.5 mm Cd2+, could not generate IAHP. This patch‐clamp study, performed on intact ganglia, demonstrates that the AH neurones of the guinea‐pig duodenum are under the control of four major currents, IAHP, Ih, an N‐type Ca2+ current and a slowly inactivating Na+ current.
Molecular and Cellular Neuroscience | 2007
Françoise Padilla; Marie-Lise Couble; Bertrand Coste; François Maingret; Nadine Clerc; Marcel Crest; Amy M. Ritter; Henry Magloire; Patrick Delmas
The Nav1.9 sodium channel is expressed in nociceptive DRG neurons where it contributes to spontaneous pain behavior after peripheral inflammation. Here, we used a newly developed antibody to investigate the distribution of Nav1.9 in rat and mouse trigeminal ganglion (TG) nerve endings and in enteric nervous system (ENS). In TGs, Nav1.9 was expressed in the soma of small- and medium-sized, peripherin-positive neurons. Nav1.9 was present along trigeminal afferent fibers and at terminals in lip skin and dental pulp. In the ENS, Nav1.9 was detected within the soma and proximal axons of sensory, Dogiel type II, myenteric and submucosal neurons. Immunological data were correlated with the detection of persistent TTX-resistant Na(+) currents sharing similar properties in DRG, TG and myenteric neurons. Collectively, our data support a potential role of Nav1.9 in the transmission of trigeminal pain and the regulation of intestinal reflexes. Nav1.9 might therefore constitute a molecular target for therapeutic treatments of orofacial pain and gastrointestinal syndromes.
Neuroscience | 1999
Nadine Clerc; John B. Furness; W. A. A. Kunze; Evan A. Thomas; Paul P. Bertrand
Intracellular microelectrodes were used to record the effects of extended periods (1-30 min) of synaptic activation on AH neurons in the myenteric ganglia of the guinea-pig ileum. Low-frequency (1 Hz) stimulation gave rise to a slowly developing, sustained increase in excitability of the neurons associated with depolarization and increased input resistance. The increased excitability lasted for up to 3.5 h following the stimulus period. Successive stimulus trains (1-4 min) elicited successively greater increases in excitability. The neurons went through stages of excitation. Before stimulation, 500-ms depolarizing pulses evoked up to three action potentials (phasic response) and anode break action potentials were not observed. As excitability increased, more action potentials were evoked by depolarization (the responses became tonic), anode break action potentials were observed, prolonged after hyperpolarizing potentials that follow multiple action potentials were diminished and, with substantial depolarization of the neurons, invasion by antidromic action potentials was suppressed. It is concluded that a state of elevated excitability is induced in myenteric AH neurons by synaptic activation at low frequency and that changes in excitability can outlast stimulation by several hours.
Neuroscience | 2001
George Alex; W. A. A. Kunze; John B. Furness; Nadine Clerc
AH neurons are intrinsic sensory neurons of the intestine that exhibit two types of slow synaptic event: slow excitatory postsynaptic potentials which increase their excitability for about 2-4 min, and sustained slow postsynaptic excitation which can persist for several hours, and may be involved in long-term changes in the sensitivity of the intestine to sensory stimuli. The effects of the neurokinin-3 tachykinin receptor antagonist, SR142801, on these two types of synaptic event in AH neurons of the myenteric ganglia of guinea-pig small intestine were compared. Slow excitatory postsynaptic potentials were evoked by stimulation of synaptic inputs at 10-20 Hz for 1s, and sustained slow postsynaptic excitation was evoked by stimulation of inputs at 1Hz for 4 min. SR142801 (1microM) reduced the amplitude of the slow excitatory postsynaptic potential to 26% of control, and also reduced the increase in input resistance and the extent of anode break excitation associated with the slow excitatory postsynaptic potential. In contrast, SR142801 did not reduce the increase in excitability, the increase in input resistance or the depolarisation that occur during the sustained slow postsynaptic excitation. SR142801 did not change the resting membrane potential or the resting input resistance. We conclude that tachykinins, acting through neurokinin-3 receptors, are involved in the generation of the slow excitatory postsynaptic potential, but not in the sustained slow postsynaptic excitation, and that the release of transmitters from synaptic inputs to AH neurons is frequency coded.
Neuroscience | 1998
Nadine Clerc; John B. Furness; Z. S. Li; Joel C. Bornstein; W. A. A. Kunze
Nerve circuits within the proximal duodenum were investigated using a combination of immunohistochemistry for individual neuron markers and lesion of intrinsic nerve pathways to determine axon projections. Cell shapes and axonal projections were also studied in cells that had been injected with a marker substance. Several major neuron populations were identified. Calbindin immunoreactivity occurred in a population of myenteric nerve cells with Dogiel type II morphology. These had axons that projected to other myenteric ganglia, to the circular muscle and to the mucosa. All were immunoreactive for the synthesizing enzyme for acetylcholine, choline acetyltransferase, and some were also immunoreactive for calretinin. Myenteric neurons with nitric oxide synthase immunoreactivity projected anally to the circular muscle. These were also immunoreactive for vasoactive intestinal peptide, and proportions of them had enkephalin and/or neuropeptide Y immunoreactivity. It is suggested that they are inhibitory motor neurons to the circular muscle. A very few (about 2%) of nitric oxide synthase-immunoreactive neurons had choline acetyltransferase immunoreactivity. Tachykinin (substance P)-immunoreactive nerve cells were numerous in the myenteric plexus. Some of these projected orally to the circular muscle and are concluded to be excitatory motor neurons. Others projected to the tertiary plexus which innervates the longitudinal muscle and others provided terminals in the myenteric plexus. Two groups of descending interneurons were identified, one with somatostatin immunoreactivity and one with vasoactive intestinal peptide immunoreactivity. The two most common nerve cells in submucous ganglia were neuropeptide Y- and vasoactive intestinal peptide-immunoreactive nerve cells. Both provided innervation of the mucosa. There was also a population of calretinin-immunoreactive submucous neurons that innervated the mucosal glands, but not the villi. Comparison with the ileum reveals similarities in the chemistries and projections of neurons. Differences include the almost complete absence of nitric oxide synthase immunoreactivity from vasoactive intestinal peptide-immunoreactive interneurons in the duodenum, the projection of calbindin-immunoreactive Dogiel type II neurons to the circular muscle and the absence of tachykinin-immunoreactivity from these neurons.
Autonomic Neuroscience: Basic and Clinical | 2001
John B. Furness; Henry S. Koopmans; Heather L. Robbins; Nadine Clerc; J.M Tobin; Margaret J. Morris
Truncal vagotomy can cause reduced food intake and weight loss in humans and laboratory animals. In order to investigate some of the factors that might contribute to this effect, we studied changes in ingestive behaviour, whole body and organ weights, serum leptin and hypothalamic neuropeptide Y in rats with bilateral vagal section, bilateral splanchnic nerve section and combined vagotomy plus splanchnectomy. Pyloromyotomy was combined with vagotomy to lessen effects of vagotomy on gastric emptying. Animals with vagotomy or vagotomy plus splanchnectomy lost weight and decreased their daily food intake relative to animals with splanchnectomy alone, rats with bilateral sham exposure of one or both nerve, or rats with pyloromyotomy alone. Serum leptin and white fat mass, 4 weeks after vagotomy, were about 20% of the values in the sham-operated animals at this time. No effect for splanchnic nerve section alone was observed. Pyloromyotomy caused no reduction in weight or fat mass, but reduced serum leptin. Following vagotomy with or without splanchnic nerve section, neuropeptide Y was elevated in the arcuate nucleus relative to values for the other four groups. Changes in neuropeptide Y were inversely correlated with levels of serum leptin. It is concluded that the effect of vagotomy could be due to the loss of a feeding signal carried by vagal afferent neurons, or to changed humoral signals, for example, increased production of a satiety hormone. However, it cannot be attributed to signals that reduce feeding (for example, gastric distension) reaching the central nervous system via the splanchnic nerves. The changes were sufficient to cause weight loss even though serum leptin was decreased, a change that would be expected to increase food intake.
Neurogastroenterology and Motility | 2004
Nadine Clerc; John B. Furness
Intrinsic primary afferent neurones of the intestine are specialized neurones that encode information about the state of the intestine by transducing mechanical and chemical stimuli that reflect tension in the gut wall and the chemical nature of its contents. They connect with interneurones and motor neurones in the gut to form the circuits of intrinsic muscle motor, secretomotor and vasomotor reflexes. A large range of ionic currents occur in these neurones. The neurones have voltage‐activated inward sodium currents (both tetrodotoxin‐sensitive and tetrodotoxin‐insensitive) and inward calcium currents. Calcium entering during the action potential activates a slow afterhyperpolarizing potassium current that has a profound influence on subsequent action potential firing. They also exhibit a prominent hyperpolarization‐activated nonspecific cation current. The excitability of these neurones and sensory transduction are altered when the gut is inflamed. Changed excitability can persist after the inflammatory state has subsided. Intrinsic primary afferent neurones are thus important, both to the normal physiology and to pathophysiology of the small and large intestines.