Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nadine Henke is active.

Publication


Featured researches published by Nadine Henke.


Journal of Neurochemistry | 2009

Induction of Nrf2 and xCT are involved in the action of the neuroprotective antibiotic ceftriaxone in vitro.

Jan Lewerenz; Philipp Albrecht; Mai-Ly Tran Tien; Nadine Henke; Saravanan Karumbayaram; Harley I. Kornblum; Martina Wiedau-Pazos; Dave Schubert; Pamela Maher; Axel Methner

In amyotrophic lateral sclerosis, down‐regulation of the astrocyte‐specific glutamate excitatory amino acid transporter 2 is hypothesized to increase extracellular glutamate, thereby leading to excitotoxic motor neuron death. The antibiotic ceftriaxone was recently reported to induce excitatory amino acid transporter 2 and to prolong the survival of mutant superoxide dismutase 1 transgenic mice. Here we show that ceftriaxone also protects fibroblasts and the hippocampal cell line HT22, which are not sensitive to excitotoxicity, against oxidative glutamate toxicity, where extracellular glutamate blocks cystine import via the glutamate/cystine‐antiporter system xc−. Lack of intracellular cystine leads to glutathione depletion and cell death because of oxidative stress. Ceftriaxone increased system xc− and glutathione levels independently of its effect on excitatory amino acid transporters by induction of the transcription factor Nrf2 (nuclear factor erythroid 2‐related factor 2), a known inducer of system xc−, and the specific xc− subunit xCT. No significant effect was apparent in fibroblasts deficient in Nrf2 or xCT. Similar ceftriaxone‐stimulated changes in Nrf2, system xc−, and glutathione were observed in rat cortical and spinal astrocytes. In addition, ceftriaxone induced xCT mRNA expression in stem cell‐derived human motor neurons. We conclude that ceftriaxone‐mediated neuroprotection might relate more strongly to activation of the antioxidant defense system including Nrf2 and system xc− than to excitatory amino acid transporter induction.


Cancer Cell | 2009

The B cell mutator AID promotes B lymphoid blast crisis and drug resistance in chronic myeloid leukemia.

Lars Klemm; Cihangir Duy; Ilaria Iacobucci; Stefan Kuchen; Gregor von Levetzow; Niklas Feldhahn; Nadine Henke; Zhiyu Li; Thomas K. Hoffmann; Yong Mi Kim; Wolf-Karsten Hofmann; Hassan Jumaa; John Groffen; Nora Heisterkamp; Giovanni Martinelli; Michael R. Lieber; Rafael Casellas; Markus Müschen

Chronic myeloid leukemia (CML) is induced by BCR-ABL1 and can be effectively treated for many years with Imatinib until leukemia cells acquire drug resistance through BCR-ABL1 mutations and progress into fatal B lymphoid blast crisis (LBC). Despite its clinical significance, the mechanism of progression into LBC is unknown. Here, we show that LBC but not CML cells express the B cell-specific mutator enzyme AID. We demonstrate that AID expression in CML cells promotes overall genetic instability by hypermutation of tumor suppressor and DNA repair genes. Importantly, our data uncover a causative role of AID activity in the acquisition of BCR-ABL1 mutations leading to Imatinib resistance, thus providing a rationale for the rapid development of drug resistance and blast crisis progression.


Journal of Neuroinflammation | 2012

Effects of dimethyl fumarate on neuroprotection and immunomodulation

Philipp Albrecht; Imane Bouchachia; Norbert Goebels; Nadine Henke; Harald H. Hofstetter; Andrea Issberner; Zsuzsa Kovacs; Jan Lewerenz; Dmitrij Lisak; Pamela Maher; Anne-Kathrin Mausberg; Kim Quasthoff; Corinna Zimmermann; Hans-Peter Hartung; Axel Methner

BackgroundNeuronal degeneration in multiple sclerosis has been linked to oxidative stress. Dimethyl fumarate is a promising novel oral therapeutic option shown to reduce disease activity and progression in patients with relapsing-remitting multiple sclerosis. These effects are presumed to originate from a combination of immunomodulatory and neuroprotective mechanisms. We aimed to clarify whether neuroprotective concentrations of dimethyl fumarate have immunomodulatory effects.FindingsWe determined time- and concentration-dependent effects of dimethyl fumarate and its metabolite monomethyl fumarate on viability in a model of endogenous neuronal oxidative stress and clarified the mechanism of action by quantitating cellular glutathione content and recycling, nuclear translocation of transcription factors, and the expression of antioxidant genes. We compared this with changes in the cytokine profiles released by stimulated splenocytes measured by ELISPOT technology and analyzed the interactions between neuronal and immune cells and neuronal function and viability in cell death assays and multi-electrode arrays. Our observations show that dimethyl fumarate causes short-lived oxidative stress, which leads to increased levels and nuclear localization of the transcription factor nuclear factor erythroid 2-related factor 2 and a subsequent increase in glutathione synthesis and recycling in neuronal cells. Concentrations that were cytoprotective in neuronal cells had no negative effects on viability of splenocytes but suppressed the production of proinflammatory cytokines in cultures from C57BL/6 and SJL mice and had no effects on neuronal activity in multi-electrode arrays.ConclusionsThese results suggest that immunomodulatory concentrations of dimethyl fumarate can reduce oxidative stress without altering neuronal network activity.


Journal of Experimental Medicine | 2007

Activation-induced cytidine deaminase acts as a mutator in BCR-ABL1–transformed acute lymphoblastic leukemia cells

Niklas Feldhahn; Nadine Henke; Kai Melchior; Cihangir Duy; Bonaventure Ndikung Bejeng Soh; Florian Klein; Gregor von Levetzow; Bernd Giebel; Aihong Li; Wolf-Karsten Hofmann; Hassan Jumaa; Markus Müschen

The Philadelphia chromosome (Ph) encoding the oncogenic BCR-ABL1 kinase defines a subset of acute lymphoblastic leukemia (ALL) with a particularly unfavorable prognosis. ALL cells are derived from B cell precursors in most cases and typically carry rearranged immunoglobulin heavy chain (IGH) variable (V) region genes devoid of somatic mutations. Somatic hypermutation is restricted to mature germinal center B cells and depends on activation-induced cytidine deaminase (AID). Studying AID expression in 108 cases of ALL, we detected AID mRNA in 24 of 28 Ph+ ALLs as compared with 6 of 80 Ph− ALLs. Forced expression of BCR-ABL1 in Ph− ALL cells and inhibition of the BCR-ABL1 kinase showed that aberrant expression of AID depends on BCR-ABL1 kinase activity. Consistent with aberrant AID expression in Ph+ ALL, IGH V region genes and BCL6 were mutated in many Ph+ but unmutated in most Ph− cases. In addition, AID introduced DNA single-strand breaks within the tumor suppressor gene CDKN2B in Ph+ ALL cells, which was sensitive to BCR-ABL1 kinase inhibition and silencing of AID expression by RNA interference. These findings identify AID as a BCR-ABL1–induced mutator in Ph+ ALL cells, which may be relevant with respect to the particularly unfavorable prognosis of this leukemia subset.


Nature Immunology | 2015

Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia

Srividya Swaminathan; Lars Klemm; Eugene Park; Elli Papaemmanuil; Anthony M. Ford; Soo-Mi Kweon; Daniel Trageser; Brian Hasselfeld; Nadine Henke; Jana Mooster; Huimin Geng; Klaus Schwarz; Scott C. Kogan; Rafael Casellas; David G. Schatz; Michael R. Lieber; Mel Greaves; Markus Müschen

Childhood acute lymphoblastic leukemia (ALL) can often be traced to a pre-leukemic clone carrying a prenatal genetic lesion. Postnatally acquired mutations then drive clonal evolution toward overt leukemia. The enzymes RAG1-RAG2 and AID, which diversify immunoglobulin-encoding genes, are strictly segregated in developing cells during B lymphopoiesis and peripheral mature B cells, respectively. Here we identified small pre-BII cells as a natural subset with increased genetic vulnerability owing to concurrent activation of these enzymes. Consistent with epidemiological findings on childhood ALL etiology, susceptibility to genetic lesions during B lymphopoiesis at the transition from the large pre-BII cell stage to the small pre-BII cell stage was exacerbated by abnormal cytokine signaling and repetitive inflammatory stimuli. We demonstrated that AID and RAG1-RAG2 drove leukemic clonal evolution with repeated exposure to inflammatory stimuli, paralleling chronic infections in childhood.


Journal of Biological Chemistry | 2012

The C Terminus of Bax Inhibitor-1 Forms a Ca2+-permeable Channel Pore

Geert Bultynck; Santeri Kiviluoto; Nadine Henke; Hristina Ivanova; Lars Schneider; Volodymyr Rybalchenko; Tomas Luyten; Koen Nuyts; Wim De Borggraeve; Ilya Bezprozvanny; Jan B. Parys; Humbert De Smedt; Ludwig Missiaen; Axel Methner

Background: Evolutionary conserved Bax inhibitor-1 (BI-1) protects against ER stress-mediated apoptosis. Results: We identified a Ca2+-permeable channel pore in the C terminus of BI-1. Critical pore properties are an α-helical structure and two aspartate residues conserved among animals, but not among plants and yeast. Conclusion: C-terminal domain of BI-1 harbors a Ca2+-permeable channel pore. Significance: BI-1 has Ca2+ channel properties likely relevant for its function in ER stress and apoptosis. Bax inhibitor-1 (BI-1) is a multitransmembrane domain-spanning endoplasmic reticulum (ER)-located protein that is evolutionarily conserved and protects against apoptosis and ER stress. Furthermore, BI-1 is proposed to modulate ER Ca2+ homeostasis by acting as a Ca2+-leak channel. Based on experimental determination of the BI-1 topology, we propose that its C terminus forms a Ca2+ pore responsible for its Ca2+-leak properties. We utilized a set of C-terminal peptides to screen for Ca2+ leak activity in unidirectional 45Ca2+-flux experiments and identified an α-helical 20-amino acid peptide causing Ca2+ leak from the ER. The Ca2+ leak was independent of endogenous ER Ca2+-release channels or other Ca2+-leak mechanisms, namely translocons and presenilins. The Ca2+-permeating property of the peptide was confirmed in lipid-bilayer experiments. Using mutant peptides, we identified critical residues responsible for the Ca2+-leak properties of this BI-1 peptide, including a series of critical negatively charged aspartate residues. Using peptides corresponding to the equivalent BI-1 domain from various organisms, we found that the Ca2+-leak properties were conserved among animal, but not plant and yeast orthologs. By mutating one of the critical aspartate residues in the proposed Ca2+-channel pore in full-length BI-1, we found that Asp-213 was essential for BI-1-dependent ER Ca2+ leak. Thus, we elucidated residues critically important for BI-1-mediated Ca2+ leak and its potential channel pore. Remarkably, one of these residues was not conserved among plant and yeast BI-1 orthologs, indicating that the ER Ca2+-leak properties of BI-1 are an added function during evolution.


Cell Calcium | 2011

The ancient cell death suppressor BAX inhibitor-1.

Nadine Henke; Dmitrij Lisak; Lars Schneider; Jörn Habicht; Matthias Pergande; Axel Methner

Bax inhibitor-1 (BI-1) was initially identified for its ability to inhibit BAX-induced apoptosis in yeast cells and is the founding member of a family of highly hydrophobic proteins localized in diverse cellular membranes. It is evolutionarily conserved and orthologues from plants can substitute for mammalian BI-1 in regard to its anti-apoptotic function suggesting a high degree of functional conservation. BI-1 interacts with BCL-2 and BCL-XL and, similar to these two anti-apoptotic proteins, the effect of BI-1 on cell death involves changes in the amount of Ca(2+) releasable from intracellular stores. However, BI-1 is also a negative regulator of the endoplasmic reticulum stress sensor IRE1 α, it interacts with G-actin and increases actin polymerization, enhances cancer metastasis by altering glucose metabolism and activating the sodium-hydrogen exchanger, and reduces the production of reactive oxygen species through direct interaction with NADPH-P450 reductase. In this contribution, we summarize what is known about the expression, intracellular localization and structure of BI-1 and specifically illuminate its effects on the intracellular Ca(2+) homeostasis and how this might relate to its other functions. We also present a thorough phylogenetic analysis of BI-1 proteins from major phyla together with paralogues from all BI-1 family members.


Human Molecular Genetics | 2012

Charcot-Marie-Tooth disease CMT4A: GDAP1 increases cellular glutathione and the mitochondrial membrane potential

Rebecca Noack; Svenja Frede; Philipp Albrecht; Nadine Henke; Annika Pfeiffer; Kathrin Knoll; Thomas Dehmel; Gerd Meyer zu Hörste; Mark Stettner; Bernd C. Kieseier; Holger Summer; Stefan Golz; Andrzej Kochański; Martina Wiedau-Pazos; Susanne Arnold; Jan Lewerenz; Axel Methner

Mutations in GDAP1 lead to recessively or dominantly inherited peripheral neuropathies (Charcot-Marie-Tooth disease, CMT), indicating that GDAP1 is essential for the viability of cells in the peripheral nervous system. GDAP1 contains domains characteristic of glutathione-S-transferases (GSTs), is located in the outer mitochondrial membrane and induces fragmentation of mitochondria. We found GDAP1 upregulated in neuronal HT22 cells selected for resistance against oxidative stress. GDAP1 over-expression protected against oxidative stress caused by depletion of the intracellular antioxidant glutathione (GHS) and against effectors of GHS depletion that affect the mitochondrial membrane integrity like truncated BH3-interacting domain death agonist and 12/15-lipoxygenase. Gdap1 knockdown, in contrast, increased the susceptibility of motor neuron-like NSC34 cells against GHS depletion. Over-expression of wild-type GDAP1, but not of GDAP1 with recessively inherited mutations that cause disease and reduce fission activity, increased the total cellular GHS content and the mitochondrial membrane potential up to a level where it apparently limits mitochondrial respiration, leading to reduced mitochondrial Ca(2+) uptake and superoxide production. Fibroblasts from autosomal-recessive CMT4A patients had reduced GDAP1 levels, reduced GHS concentration and a reduced mitochondrial membrane potential. Thus, our results suggest that the potential GST GDAP1 is implicated in the control of the cellular GHS content and mitochondrial activity, suggesting an involvement of oxidative stress in the pathogenesis of CMT4A.


Experimental Neurology | 2011

Store-operated calcium entry modulates neuronal network activity in a model of chronic epilepsy.

Julius A. Steinbeck; Nadine Henke; Jessica Opatz; Joanna Gruszczynska-Biegala; Lars Schneider; Stephan Theiss; Nadine Hamacher; Barbara Steinfarz; Stefan Golz; Oliver Brüstle; Jacek Kuznicki; Axel Methner

Store-operated Ca(2+) entry (SOCE) over the plasma membrane is activated by depletion of intracellular Ca(2+) stores and has only recently been shown to play a role in CNS processes like synaptic plasticity. However, the direct effect of SOCE on the excitability of neuronal networks in vitro and in vivo has never been determined. We confirmed the presence of SOCE and the expression of the calcium sensors STIM1 and STIM2, which convey information about the calcium load of the stores to channel proteins at the plasma membrane, in neurons and astrocytes. Inhibition of SOCE by pharmacological agents 2-APB and ML-9 reduced the steady-state neuronal Ca(2+) concentration, reduced network activity, and increased synchrony of primary neuronal cultures grown on multi-electrode arrays, which prompted us to elucidate the relative expression of STIM proteins in conditions of pathologic excitability. Both proteins were increased in brains of chronic epileptic rodents and strongly expressed in hippocampal specimens from medial temporal lobe epilepsy patients. Pharmacologic inhibition of SOCE in chronic epileptic hippocampal slices suppressed interictal spikes and rhythmized epileptic burst activity. Our results indicate that SOCE modulates the activity of neuronal networks in vitro and in vivo and delineates SOCE as a potential drug target.


Journal of Biological Chemistry | 2012

Stromal interaction molecule 1 (STIM1) is involved in the regulation of mitochondrial shape and bioenergetics and plays a role in oxidative stress

Nadine Henke; Philipp Albrecht; Annika Pfeiffer; Diamandis Toutzaris; Klaus Zanger; Axel Methner

Background: Store-operated Ca2+ entry is regulated by the sensor STIM1 and the channel ORAI1. Results: Deficiency alters mitochondrial shape and increases mitochondrial activity resulting in increased susceptibility to oxidative stress and cell death by nuclear translocation of apoptosis-inducing factor. Conclusion: Store-operated Ca2+ entry regulates mitochondrial function and vulnerability. Significance: STIM1 plays a role in oxidative stress by regulating mitochondrial function. Calcium ions are involved in a plethora of cellular functions including cell death and mitochondrial energy metabolism. Store-operated Ca2+ entry over the plasma membrane is activated by depletion of intracellular Ca2+ stores and is mediated by the sensor STIM1 and the channel ORAI1. We compared cell death susceptibility to oxidative stress in STIM1 knock-out and ORAI1 knockdown mouse embryonic fibroblasts and in knock-out cells with reconstituted wild type and dominant active STIM1. We show that STIM1 and ORAI1 deficiency renders cells more susceptible to oxidative stress, which can be rescued by STIM1 and ORAI1 overexpression. STIM1 knock-out mitochondria are tubular, have a higher Ca2+ concentration, and are metabolically more active, resulting in constitutive oxidative stress causing increased nuclear translocation of the antioxidant transcription factor NRF2 triggered by increased phosphorylation of the translation initiation factor eIF2α and the protein kinase-like endoplasmic reticulum kinase PERK. This leads to increased transcription of antioxidant genes and a high basal glutathione in STIM1 knock-out cells, which is, however, more rapidly expended upon additional stress, resulting in increased release and nuclear translocation of apoptosis-inducing factor with subsequent cell death. Our data suggest that store-operated Ca2+ entry and STIM1 are involved in the regulation of mitochondrial shape and bioenergetics and play a role in oxidative stress.

Collaboration


Dive into the Nadine Henke's collaboration.

Top Co-Authors

Avatar

Axel Methner

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Schneider

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Dmitrij Lisak

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pamela Maher

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annika Pfeiffer

University of Düsseldorf

View shared research outputs
Researchain Logo
Decentralizing Knowledge