Nadine Le Bris
University of Paris
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nadine Le Bris.
Geochemistry Geophysics Geosystems | 2010
Franck Lartaud; Marc de Rafélis; Graham Oliver; Elena M Krylova; J. Dyment; Benoit Ildefonse; Remy Thibaud; Pascal Gente; E. Hoise; Anne-Leila Meistertzheim; Yves Fouquet; Françoise Gaill; Nadine Le Bris
Hydrothermal circulation at ultramafic-hosted sites supports a large variety of high-and low-temperature hydrothermal vents and associated ecosystems. The discovery of abundant fossil vesicomyid and thyasirid shell accumulations at the ridge crest, approximately 2.5 km east of the active Rainbow vent field on the Mid-Atlantic Ridge (MAR, 36 degrees 13N), increased our knowledge regarding the diversity of vent communities at slow spreading ridges. Bivalve molluscs of the family Vesicomyidae were represented by the genus Phreagena. Here we present the first record of this genus in the Atlantic Ocean. This second vesicomyid species known from the MAR, Phreagena sp., was found to be associated with a Thyasira species that is affiliated with T. southwardae (at the Logatchev vent field on the MAR) and with T. vulcolutre (in the Gulf of Cadiz). These two clams have close relationships with seep taxa along the continental margin, and were likely associated with sedimented vent fields. delta O-18 and delta C-13 analyses of the shells suggested that the burrowing bivalve Thyasira could incorporate isotopically light carbon, derived from the oxidation of methane in the sediment, while the signature of Phreagena sp. shells denoted a different carbonate source. C-14 dating of the shells denoted that the hydrothermal activity in the Rainbow area began at least similar to 25.5 kyr BP, which is similar to the model of the hydrothermal vent field distribution that was proposed for the Logatchev hydrothermal site. The results provide new insight regarding the diversity of chemosynthetic fauna on the MAR over geologic time. Ultramafic-hosted, on-axis sedimented vent fields extend the range of habitats for chemosynthetic communities, underlying the need to further explore the geology of these types of environments on slow-spreading ridges and to determine their role in the ecology of deep-sea vent communities.
Environmental Microbiology | 2010
Félix Muller; Terry Brissac; Nadine Le Bris; Horst Felbeck; Olivier Gros
Archaea may be involved in global energy cycles, and are known for their ability to interact with eukaryotic species (sponges, corals and ascidians) or as archaeal-bacterial consortia. The recently proposed phylum Thaumarchaeota may represent the deepest branching lineage in the archaeal phylogeny emerging before the divergence between Euryarchaeota and Crenarchaeota. Here we report the first characterization of two marine thaumarchaeal species from shallow waters that consist of multiple giant cells. One species is coated with sulfur-oxidizing γ-Proteobacteria. These new uncultured thaumarchaeal species are able to live in the sulfide-rich environments of a tropical mangrove swamp, either on living tissues such as roots or on various kinds of materials such as stones, sunken woods, etc. These archaea and archaea/bacteria associations have been studied using light microscopy, transmission electron microscopy and scanning electron microscopy. Species identification of archaeons and the putative bacterial symbiont have been assessed by 16S small subunit ribosomal RNA analysis. The sulfur-oxidizing ability of the bacteria has been assessed by genetic investigation on alpha-subunit of the adenosine-5-phosphosulfate reductase/oxidases (AprA). Species identifications have been confirmed by fluorescence in situ hybridization using specific probes designed in this study. In this article, we describe two new giant archaeal species that form the biggest archaeal filaments ever observed. One of these species is covered by a specific biofilm of sulfur-oxidizing γ-Proteobacteria. This study highlights an unexpected morphological and genetic diversity of the phylum Thaumarchaeota.
Science | 2015
Lisa A. Levin; Nadine Le Bris
The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems.
The ISME Journal | 2012
Antje Gardebrecht; Stephanie Markert; Stefan M. Sievert; Horst Felbeck; Andrea Thürmer; Dirk Albrecht; Antje Wollherr; Johannes Kabisch; Nadine Le Bris; Rüdiger Lehmann; Rolf Daniel; Heiko Liesegang; Michael Hecker; Thomas Schweder
The two closely related deep-sea tubeworms Riftia pachyptila and Tevnia jerichonana both rely exclusively on a single species of sulfide-oxidizing endosymbiotic bacteria for their nutrition. They do, however, thrive in markedly different geochemical conditions. A detailed proteogenomic comparison of the endosymbionts coupled with an in situ characterization of the geochemical environment was performed to investigate their roles and expression profiles in the two respective hosts. The metagenomes indicated that the endosymbionts are genotypically highly homogeneous. Gene sequences coding for enzymes of selected key metabolic functions were found to be 99.9% identical. On the proteomic level, the symbionts showed very consistent metabolic profiles, despite distinctly different geochemical conditions at the plume level of the respective hosts. Only a few minor variations were observed in the expression of symbiont enzymes involved in sulfur metabolism, carbon fixation and in the response to oxidative stress. Although these changes correspond to the prevailing environmental situation experienced by each host, our data strongly suggest that the two tubeworm species are able to effectively attenuate differences in habitat conditions, and thus to provide their symbionts with similar micro-environments.
Chemosphere | 2013
Mustafa Yücel; Pierre E. Galand; Sonja K. Fagervold; Leonardo Contreira-Pereira; Nadine Le Bris
Woody debris is known to be transported to the seas and accumulate on the seafloor, however, little is known on the consequences of its degradation in the marine environment. In this study we monitored the degradation product sulfide with Au/Hg voltammetric microelectrodes on the surface and interior of an experimentally immersed wood for 200 d. After 5 weeks of immersion, the interior became sulfidic, and steady-state conditions were established after 13 weeks with sulfide concentration reaching about 300 μM. Although sulfide was briefly detected at the surface of wood, its concentration remained lower than 20 μM, indicating that this compound was effectively oxidized within the substrate. Fitting these data to a kinetic model lead to an estimated microbial sulfide production rate in the range of 19-28 μM d(-1) at steady state. As much as 24 μM d(-1) nitrate could be consumed by this process in the steady-state period. Before the establishment of the steady state conditions, steep fluctuations in sulfide concentration (between 1mM and several μM) were observed in the wood interior. This study is the first to document the temporal dynamics of this unsteady process, characterized by fast sulfide fluctuation and consumption. Our results point to the complex mechanisms driving the dynamics of wood biogeochemical transformations, and reveal the capacity of woody debris to generate sulfidic conditions and act as a possible sink for oxygen and nitrate in the marine environment.
Marine Environmental Research | 2013
Mélina C.Z. Laurent; Nadine Le Bris; Françoise Gaill; Olivier Gros
Wood debris are an important component of mangrove marine environments. Current knowledge of the ecological role of wood falls is limited by the absence of information on metazoan colonization processes over time. The aim of this study was to provide insights to their temporal dynamics of wood eukaryotic colonization from a shallow water experiment in a mangrove swamp. Combined in situ chemical monitoring and biological surveys revealed that the succession of colonizers in the mangrove swamp relates with the rapid evolution of sulfide concentration on the wood surface. Sulfide-tolerant species are among the first colonizers and dominate over several weeks when the sulfide content is at its maximum, followed by less tolerant opportunistic species when sulfide decreases. This study supports the idea that woody debris can sustain chemosynthetic symbioses over short time-scale in tropical shallow waters.
PLOS ONE | 2012
Lauren S. Mullineaux; Nadine Le Bris; Susan W. Mills; Pauline Henri; Skylar R. Bayer; Richard G. Secrist; Nam Siu
Deep-sea hydrothermal vents are subject to major disturbances that alter the physical and chemical environment and eradicate the resident faunal communities. Vent fields are isolated by uninhabitable deep seafloor, so recolonization via dispersal of planktonic larvae is critical for persistence of populations. We monitored colonization near 9°50′N on the East Pacific Rise following a catastrophic eruption in order to address questions of the relative contributions of pioneer colonists and environmental change to variation in species composition, and the role of pioneers at the disturbed site in altering community structure elsewhere in the region. Pioneer colonists included two gastropod species: Ctenopelta porifera, which was new to the vent field, and Lepetodrilus tevnianus, which had been rare before the eruption but persisted in high abundance afterward, delaying and possibly out-competing the ubiquitous pre-eruption congener L. elevatus. A decrease in abundance of C. porifera over time, and the arrival of later species, corresponded to a decrease in vent fluid flow and in the sulfide to temperature ratio. For some species these successional changes were likely due to habitat requirements, but other species persisted (L. tevnianus) or arrived (L. elevatus) in patterns unrelated to their habitat preferences. After two years, disturbed communities had started to resemble pre-eruption ones, but were lower in diversity. When compared to a prior (1991) eruption, the succession of foundation species (tubeworms and mussels) appeared to be delayed, even though habitat chemistry became similar to the pre-eruption state more quickly. Surprisingly, a nearby community that had not been disturbed by the eruption was invaded by the pioneers, possibly after they became established in the disturbed vents. These results indicate that the post-eruption arrival of species from remote locales had a strong and persistent effect on communities at both disturbed and undisturbed vents.
The ISME Journal | 2015
Dimitri Kalenitchenko; Sonja K. Fagervold; Audrey M. Pruski; Gilles Vétion; Mustafa Yücel; Nadine Le Bris; Pierre E. Galand
Wood falls on the ocean floor form chemosynthetic ecosystems that remain poorly studied compared with features such as hydrothermal vents or whale falls. In particular, the microbes forming the base of this unique ecosystem are not well characterized and the ecology of communities is not known. Here we use wood as a model to study microorganisms that establish and maintain a chemosynthetic ecosystem. We conducted both aquaria and in situ deep-sea experiments to test how different environmental constraints structure the assembly of bacterial, archaeal and fungal communities. We also measured changes in wood lipid concentrations and monitored sulfide production as a way to detect potential microbial activity. We show that wood falls are dynamic ecosystems with high spatial and temporal community turnover, and that the patterns of microbial colonization change depending on the scale of observation. The most illustrative example was the difference observed between pine and oak wood community dynamics. In pine, communities changed spatially, with strong differences in community composition between wood microhabitats, whereas in oak, communities changed more significantly with time of incubation. Changes in community assembly were reflected by changes in phylogenetic diversity that could be interpreted as shifts between assemblies ruled by species sorting to assemblies structured by competitive exclusion. These ecological interactions followed the dynamics of the potential microbial metabolisms accompanying wood degradation in the sea. Our work showed that wood is a good model for creating and manipulating chemosynthetic ecosystems in the laboratory, and attracting not only typical chemosynthetic microbes but also emblematic macrofaunal species.
The ISME Journal | 2016
Dimitri Kalenitchenko; Marlène Dupraz; Nadine Le Bris; Carole Petetin; Christophe Rose; Nyree J West; Pierre E. Galand
Chemosynthetic mats involved in cycling sulfur compounds are often found in hydrothermal vents, cold seeps and whale falls. However, there are only few records of wood fall mats, even though the presence of hydrogen sulfide at the wood surface should create a perfect niche for sulfide-oxidizing bacteria. Here we report the growth of microbial mats on wood incubated under conditions that simulate the Mediterranean deep-sea temperature and darkness. We used amplicon and metagenomic sequencing combined with fluorescence in situ hybridization to test whether a microbial succession occurs during mat formation and whether the wood fall mats present chemosynthetic features. We show that the wood surface was first colonized by sulfide-oxidizing bacteria belonging to the Arcobacter genus after only 30 days of immersion. Subsequently, the number of sulfate reducers increased and the dominant Arcobacter phylotype changed. The ecological succession was reflected by a change in the metabolic potential of the community from chemolithoheterotrophs to potential chemolithoautotrophs. Our work provides clear evidence for the chemosynthetic nature of wood fall ecosystems and demonstrates the utility to develop experimental incubation in the laboratory to study deep-sea chemosynthetic mats.
Journal of Marine Science and Technology | 2014
Sandrine Bessette; Sonja K. Fagervold; Chiara Romano; Daniel Martin; Nadine Le Bris; Pierre E. Galand
Sunken woods are very rich and diverse ecosystems supporting large macrofaunal diversity and representing a source of carbon and energy for any heterotrophic organism able to consume plant material, and those relying on specialized microbial taxa. However, relatively little is known about the microbial communities that degrade sunken woods and produce reduced compounds that serve as energy sources for chemosynthetic lifestyles. The purpose of this study was to explore the bacterial diversity developing on and within sunken woods in a NW Mediterranean submarine canyon and its adjacent slope by using 16S rRNA genes survey. We described communities from Pine wood immerged at 1200m deep in the Blanes Canyon and its adjacent open slope, as well as from material filling wood boring bivalve burrows. We demonstrate that bacterial communities were very different from each other in each of the three wood ecosystems. These highly diverse wood communities contained all the major bacterial phyla, but Alphaproteobacteria and Deltaproteobacteria were dominant in the open slope and the canyon, respectively. The burrows had more Gamma- and Epsilon-proteobacteria. In summary, highly diverse bacterial communities with potentially wide metabolic capabilities colonized wood sunken in the Blanes Canyon and its adjacent open slopes in the Mediterranean Sea.