Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nadine Pernodet is active.

Publication


Featured researches published by Nadine Pernodet.


Small | 2009

Adverse Effects of Titanium Dioxide Nanoparticles on Human Dermal Fibroblasts and How to Protect Cells

Zhi Pan; Wilson Lee; Lenny Slutsky; Richard A.F. Clark; Nadine Pernodet; Miriam Rafailovich

The effects of exposure of human dermal fibroblasts to rutile and anatase TiO(2) nanoparticles are reported. These particles can impair cell function, with the latter being more potent at producing damage. The exposure to nanoparticles decreases cell area, cell proliferation, mobility, and ability to contract collagen. Individual particles are shown to penetrate easily through the cell membrane in the absence of endocytosis, while some endocytosis is observed for larger particle clusters. Once inside, the particles are sequestered in vesicles, which continue to fill up with increasing incubation time till they rupture. Particles coated with a dense grafted polymer brush are also tested, and, using flow cytometry, are shown to prevent adherence to the cell membrane and hence penetration of the cell, which effectively decreases reactive oxygen species (ROS) formation and protects cells, even in the absence of light exposure. Considering the broad applications of these nanoparticles in personal health care products, the functionalized polymer coating can potentially play an important role in protecting cells and tissue from damage.


Biomaterials | 2009

The effect of organo clay and adsorbed FeO3 nanoparticles on cells cultured on Ethylene Vinyl Acetate substrates and fibers

Hilana M. Lewkowitz-Shpuntoff; Mary C. Wen; Avtar Singh; Nicole Brenner; R. J. Gambino; Nadine Pernodet; Rebecca Isseroff; Miriam Rafailovich; Jon Sokolov

Nanocomposites of Ethylene Vinyl Acetate (EVA 260) with Cloisite 20A organo clay and Cloisite 20A organo clay impregnated with Fe(CO)(5) were produced in a twin-screw extruder. Dynamic mechanical analysis (DMA) measurements indicated that the moduli increased monotonically for the Cloisite, up to a concentration of 10%, after which the modulus decreased. Adult human dermal fibroblasts (AHDF) were plated on these surfaces and the cell growth was found to be maximal on the nanocomposites containing 10% Cloisite. AHDFs cultured on substrates with higher Cloisite content had low surface area, poor growth curves, and misshaped actin fibers. Compounding EVA with Fe(CO)(5) soaked Cloisite did not enhance the modulus even at a loading of 10%. TEM images indicate nanoparticles form and coat the Cloisite platelet surfaces, possibly interfering with the exfoliation process. On the other hand, cell culture of MC3T3 osteoblasts proliferated on the Fe containing nanocomposites, the largest effect being observed when cultured in a constant magnetic field. These results indicate how the chemical nature of the Cloisite 20A organo clay can also play a major role. Finally, since natural ECM is fibrillar, these EVA nanocomposites were also electrospun into micron thick fibers. MC3T3s proliferated well on these fibers and the MC3T3 proliferation was maximized by culture on electrospun aligned fibers in a constant magnetic field.


Langmuir | 2008

Protein Immobilization on Epoxy-Activated Thin Polymer Films: Effect of Surface Wettability and Enzyme Loading

Bo Chen; Nadine Pernodet; Miriam Rafailovich; Asya Bakhtina; Richard A. Gross

A series of epoxy-activated polymer films composed of poly(glycidyl methacrylate/butyl methacrylate/hydroxyethyl methacrylate) were prepared. Variation in comonomer composition allowed exploration of relationships between surface wettability and Candida antartica lipase B (CALB) binding to surfaces. By changing solvents and polymer concentrations, suitable conditions were developed for preparation by spin-coating of uniform thin films. Film roughness determined by AFM after incubation in PBS buffer for 2 days was less than 1 nm. The occurrence of single CALB molecules and CALB aggregates at surfaces was determined by AFM imaging and measurements of volume. Absolute numbers of protein monomers and multimers at surfaces were used to determine values of CALB specific activity. Increased film wettability, as the water contact angle of films increased from 420 to 550, resulted in a decreased total number of immobilized CALB molecules. With further increases in the water contact angle of films from 55 degrees to 63 degrees, there was an increased tendency of CALB molecules to form aggregates on surfaces. On all flat surfaces, two height populations, differing by more than 30%, were observed from height distribution curves. They are attributed to changes in protein conformation and/or orientation caused by protein-surface and protein-protein interactions. The fraction of molecules in these populations changed as a function of film water contact angle. The enzyme activity of immobilized films was determined by measuring CALB-catalyzed hydrolysis of p-nitrophenyl butyrate. Total enzyme specific activity decreased by decreasing film hydrophobicity.


Chemical Communications | 2007

Multicomponent polymer coating to block photocatalytic activity of TiO2 nanoparticles.

Wilson Lee; Nadine Pernodet; Bingquan Li; Chien H. Lin; Eli Hatchwell; Miriam Rafailovich

Chemical grafting of anti-oxidant molecules with an additional hydrophobic polymer coating directly onto TiO(2) particle surfaces, using sonochemistry, is found to eliminate photocatalytic degradation enabling highly effective screening against UV radiation.


Tissue Engineering Part A | 2009

Biomineralization of a self-assembled extracellular matrix for bone tissue engineering.

Yizhi Meng; Yi-Xian Qin; Elaine DiMasi; Xiaolan Ba; Miriam Rafailovich; Nadine Pernodet

Understanding how biomineralization occurs in the extracellular matrix (ECM) of bone cells is crucial to the understanding of bone formation and the development of a successfully engineered bone tissue scaffold. It is still unclear how ECM mechanical properties affect protein-mineral interactions in early stages of bone mineralization. We investigated the longitudinal mineralization properties of MC3T3-E1 cells and the elastic modulus of their ECM using shear modulation force microscopy, synchrotron grazing incidence X-ray diffraction (GIXD), scanning electron microscopy, energy dispersive X-ray spectroscopy, and confocal laser scanning microscopy (CLSM). The elastic modulus of the ECM fibers underwent significant changes for the mineralizing cells, which were not observed in the nonmineralizing cells. On substrates conducive to ECM network production, the elastic modulus of mineralizing cells increased at time points corresponding to mineral production, whereas that of the nonmineralizing cells did not vary over time. The presence of hydroxyapatite in mineralizing cells and the absence thereof in the nonmineralizing ones were confirmed by GIXD, and CLSM showed that a restructuring of actin occurred only for mineral-producing cells. These results show that the correct and complete development of the ECM network is required for osteoblasts to mineralize. This in turn requires a suitably prepared synthetic substrate for bone development to succeed in vitro.


International Journal of Molecular Sciences | 2016

Biological Rhythms in the Skin

Mary S. Matsui; Edward Pelle; Kelly Dong; Nadine Pernodet

Circadian rhythms, ≈24 h oscillations in behavior and physiology, are reflected in all cells of the body and function to optimize cellular functions and meet environmental challenges associated with the solar day. This multi-oscillatory network is entrained by the master pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus, which directs an organism’s rhythmic expression of physiological functions and behavior via a hierarchical system. This system has been highly conserved throughout evolution and uses transcriptional–translational autoregulatory loops. This master clock, following environmental cues, regulates an organism’s sleep pattern, body temperature, cardiac activity and blood pressure, hormone secretion, oxygen consumption and metabolic rate. Mammalian peripheral clocks and clock gene expression have recently been discovered and are present in all nucleated cells in our body. Like other essential organ of the body, the skin also has cycles that are informed by this master regulator. In addition, skin cells have peripheral clocks that can function autonomously. First described in 2000 for skin, this review summarizes some important aspects of a rapidly growing body of research in circadian and ultradian (an oscillation that repeats multiple times during a 24 h period) cutaneous rhythms, including clock mechanisms, functional manifestations, and stimuli that entrain or disrupt normal cycling. Some specific relationships between disrupted clock signaling and consequences to skin health are discussed in more depth in the other invited articles in this IJMS issue on Sleep, Circadian Rhythm and Skin.


Experimental Dermatology | 2013

Effects of ozone in normal human epidermal keratinocytes

James Timothy Mccarthy; Edward Pelle; Kelly Dong; Krupa Brahmbhatt; Dan Yarosh; Nadine Pernodet

Ozone is a tropospheric pollutant that can form at ground level as a result of an interaction between sunlight and hydrocarbon engine emissions. As ozone is an extremely oxidative reaction product, epidermal cells are in the outer layer of defense against ozone. We exposed normal human epidermal keratinocytes (NHEK) to concentrations of ozone that have been measured in cities and assayed for its effects. Hydrogen peroxide and IL‐1α levels both increased while ATP levels decreased. We found a decrease in the NAD‐dependent histone deacetylase, sirtuin 3. Lastly, we found that ozone increased DNA damage as evaluated by Comet assay. Taken together, our results show increased damage to NHEK that will ultimately impair normal cellular function as a result of an environmentally relevant ozone exposure.


Experimental Dermatology | 2012

Sirtuin 4 identification in normal human epidermal keratinocytes and its relation to sirtuin 3 and energy metabolism under normal conditions and UVB‐induced stress

Kelly Dong; Edward Pelle; Daniel B. Yarosh; Nadine Pernodet

Abstract:  Sirtuins (SIRT) are NAD+‐dependent deacetylases and ADP‐ribosyltransferases that play a critical role in metabolism and epigenetics. SIRT3 and SIRT4 are of particular interest because they are localized in the mitochondria where energy is generated and their expression is inversely proportional to each other. Here, we report data, for the first time, demonstrating the presence of SIRT4 in normal human epidermal keratinocytes (NHEK) and confirm that its expression is inversely related to SIRT3 in these cells and that they follow a temporal cycle. Further, UVB radiation modified their expression, as well as ATP and H2O2 levels. These deviations from the normal sirtuin cycles after UVB exposure can be an epigenetic indicator of lower metabolism levels.


Experimental Dermatology | 2011

Iron sensitizes keratinocytes and fibroblasts to UVA-mediated matrix metalloproteinase-1 through TNF-α and ERK activation

Jinlong Jian; Edward Pelle; Qing Yang; Nadine Pernodet; Daniel H. Maes; Xi Huang

Abstract:  Oestrogen deficiency is regarded as the main causative factor in postmenopausal skin ageing and photoageing. While women after menopause experience low levels of oestrogen because of cease of ovarian function, they are also exposed to high levels of iron as a result of cessation of menstruation. In this study, we investigated whether this increase in iron presents a risk to the postmenopausal skin. Because of the lack of appropriate animal models to closely mimic the low oestrogen and high iron conditions, we tested the hypothesis in a high iron and low oestrogen culture model. Here, we showed that primary human dermal fibroblasts exposed to iron did not affect the baseline levels of matrix metalloproteinase‐1 (MMP‐1) activity. However, the iron‐exposed fibroblasts were sensitized to UVA exposure, which resulted in a synergistic increase in MMP‐1. UVA activated the three members of MAPK family: ERKs, p38, and JNKs. Additional activation of ERKs by iron contributed to the synergistic increases. Primary normal human epidermal keratinocytes (NHEK) did not respond to iron or UVA exposure as measured by MMP‐1, but produced tumor necrosis factor‐alpha (TNF‐α) in the media, which then stimulated MMP‐1 in fibroblasts. Our results indicate that iron and UVA increase MMP‐1 activity in dermal fibroblasts not only directly through ERK activation but also by an indirect paracrine loop through TNF‐α released by NHEK. We conclude that in addition to oestrogen deficiency, increased iron as a result of menopause could be a novel risk factor by sensitizing postmenopausal skin to solar irradiation.


Journal of Structural Biology | 2010

Complementary effects of multi-protein components on biomineralization in vitro

Xiaolan Ba; Miriam Rafailovich; Yizhi Meng; Nadine Pernodet; Sue Wirick; Helga Füredi-Milhofer; Yi-Xian Qin; Elaine DiMasi

The extracellular matrix (ECM) is composed of mixed protein fibers whose precise composition affects biomineralization. New methods are needed to probe the interactions of these proteins with calcium phosphate mineral and with each other. Here we follow calcium phosphate mineralization on protein fibers self-assembled in vitro from solutions of fibronectin, elastin and their mixture. We probe the surface morphology and mechanical properties of the protein fibers during the early stages. The development of mineral crystals on the protein matrices is also investigated. In physiological mineralization solution, the elastic modulus of the fibers in the fibronectin-elastin mixture increases to a greater extent than that of the fibers from either pure protein. In the presence of fibronectin, longer exposure in the mineral solution leads to the formation of amorphous calcium phosphate particles templated along the self-assembled fibers, while elastin fibers only collect calcium without any mineral observed during early stage. TEM images confirm that small needle-shape crystals are confined inside elastin fibers which suppress the release of mineral outside the fibers during late stage, while hydroxyapatite crystals form when fibronectin is present. These results demonstrate complementary actions of the two ECM proteins fibronectin and elastin to collect cations and template mineral, respectively.

Collaboration


Dive into the Nadine Pernodet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shouren Ge

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar

Elaine DiMasi

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Xiaolan Ba

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar

Yizhi Meng

Stony Brook University

View shared research outputs
Researchain Logo
Decentralizing Knowledge