Nadine Schibille
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nadine Schibille.
PLOS ONE | 2011
Nadine Schibille
The chemical characterisation of archaeological glass allows the discrimination between different glass groups and the identification of raw materials and technological traditions of their production. Several lines of evidence point towards the large-scale production of first millennium CE glass in a limited number of glass making factories from a mixture of Egyptian mineral soda and a locally available silica source. Fundamental changes in the manufacturing processes occurred from the eight/ninth century CE onwards, when Egyptian mineral soda was gradually replaced by soda-rich plant ash in Egypt as well as the Islamic Middle East. In order to elucidate the supply and consumption of glass during this transitional period, 31 glass samples from the assemblage found at Pergamon (Turkey) that date to the fourth to fourteenth centuries CE were analysed by electron microprobe analysis (EPMA) and by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The statistical evaluation of the data revealed that the Byzantine glasses from Pergamon represent at least three different glass production technologies, one of which had not previously been recognised in the glass making traditions of the Mediterranean. While the chemical characteristics of the late antique and early medieval fragments confirm the current model of glass production and distribution at the time, the elemental make-up of the majority of the eighth- to fourteenth-century glasses from Pergamon indicate the existence of a late Byzantine glass type that is characterised by high alumina levels. Judging from the trace element patterns and elevated boron and lithium concentrations, these glasses were produced with a mineral soda different to the Egyptian natron from the Wadi Natrun, suggesting a possible regional Byzantine primary glass production in Asia Minor.
PLOS ONE | 2013
Nadine Schibille; Ian C. Freestone
136 glasses from the ninth-century monastery of San Vincenzo and its workshops have been analysed by electron microprobe in order to situate the assemblage within the first millennium CE glass making tradition. The majority of the glass compositions can be paralleled by Roman glass from the first to third centuries, with very few samples consistent with later compositional groups. Colours for trailed decoration on vessels, for vessel bodies and for sheet glass for windows were largely produced by melting the glass tesserae from old Roman mosaics. Some weakly-coloured transparent glass was obtained by re-melting Roman window glass, while some was produced by melting and mixing of tesserae, excluding the strongly coloured cobalt blues. Our data suggest that to feed the needs of the glass workshop, the bulk of the glass was removed as tesserae and windows from a large Roman building. This is consistent with a historical account according to which the granite columns of the monastic church were spolia from a Roman temple in the region. The purported shortage of natron from Egypt does not appear to explain the dependency of San Vincenzo on old Roman glass. Rather, the absence of contemporary primary glass may reflect the downturn in long-distance trade in the later first millennium C.E., and the role of patronage in the “ritual economy” founded upon donations and gift-giving of the time.
PLOS ONE | 2017
Jorge Ares; Nadine Schibille
One hundred and forty-one glass fragments from medieval Ciudad de Vascos (Toledo, Spain) were analysed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The glasses fall into three types according to the fluxing agents used: mineral natron, soda-rich plant ash, and a combination of soda ash and lead. The natron glasses can be assigned to various established primary production groups of eastern Mediterranean provenance. Different types of plant ash glasses indicate differences in the silica source as well as the plant ash component, reflecting changing supply mechanisms. While the earlier plant ash groups can be related to Islamic glasses from the Near East, both in terms of typology and composition, the chemical signature of the later samples appear to be specific to glass from the Iberian Peninsula. This has important implications for our understanding of the emerging glass industry in Spain and the distribution patterns of glass groups and raw materials. The plant ash that was used for the Vascos glasses is rich in soda with low levels of potash, similar to ash produced in the eastern Mediterranean. It could therefore be possible that Levantine plant ash was imported and used in Islamic period glass workshops in Spain. Unlike central and northern Europe where an independent glass industry based on potassium-rich wood ash developed during the Carolingian period, the prevalence of soda ash and soda ash lead glass on the Iberian Peninsula indicates its commercial and technological interconnection with the Islamic east. Our study thus traces several stages leading to the development of a specifically Spanish primary glassmaking industry.
PLOS ONE | 2018
Nadine Schibille; Andrew Meek; Mark T. Wypyski; Jens Kröger; Mariam Rosser-Owen; Rosalind Wade Haddon
Capital of the Abbasid Caliphate between 836 and 892 CE, the palace-city of Samarra offers a precise window into early Islamic art and architecture. Excavations conducted more than 100 years ago are seen as the beginnings of scientific Islamic archaeology, and have yielded an exceptional array of finds including a wealth of glass artefacts. The chemical composition of glass reflects the nature of the raw materials and their geological provenance and can therefore reveal past technologies and economic and cultural interactions. Through high-resolution analysis of a comprehensive glass assemblage from Samarra we have new evidence that points to the existence of an advanced Abbasid glass industry, as well as the import of specific glass objects for the thriving new capital city. Quantitative analytical data of 58 elements by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) show a striking correlation between object types and glass compositions. The compositional profiles of two related plant ash groups of architectural glass point to a local production, destined for the decoration of the famed glass walls of Abbasid palaces. The selective use of objects, materials and colours to create reflective and luminous glass walls are indicative of the great cultural and economic value of glass during the Abbasid period. Our findings thus confirm the veracity of written sources that stipulate the production of glass in the vicinity of Samarra, as well as the import of selected artefacts such as Byzantine mosaic tesserae.
Journal of Archaeological Science | 2012
Nadine Schibille; Patrick Degryse; Markku Corremans; Christian G. Specht
Journal of Archaeological Science | 2015
Th. Rehren; P. Connolly; Nadine Schibille; H. Schwarzer
Journal of Archaeological Science | 2011
Nadine Schibille
Archaeometry | 2012
Nadine Schibille; Patrick Degryse; M. O'Hea; Andrei Izmer; Frank Vanhaecke; Judith S. McKenzie
Archive | 2013
Nadine Schibille; Judith S. McKenzie
Journal of Archaeological Science: Reports | 2018
Jorge Ares; Noelia Fernández Calderón; Iván Muñiz López; Alejandro García Álvarez-Busto; Nadine Schibille