Nadine Wachsmuth
University of Bayreuth
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nadine Wachsmuth.
British Journal of Sports Medicine | 2013
Christopher J. Gore; Ken Sharpe; Laura A. Garvican-Lewis; Philo U. Saunders; Clare Humberstone; Eileen Y. Robertson; Nadine Wachsmuth; Blake D. McLean; Birgit Friedmann-Bette; Mitsuo Neya; Torben Pottgiesser; Yorck Olaf Schumacher; Walter Schmidt
Objective To characterise the time course of changes in haemoglobin mass (Hbmass) in response to altitude exposure. Methods This meta-analysis uses raw data from 17 studies that used carbon monoxide rebreathing to determine Hbmass prealtitude, during altitude and postaltitude. Seven studies were classic altitude training, eight were live high train low (LHTL) and two mixed classic and LHTL. Separate linear-mixed models were fitted to the data from the 17 studies and the resultant estimates of the effects of altitude used in a random effects meta-analysis to obtain an overall estimate of the effect of altitude, with separate analyses during altitude and postaltitude. In addition, within-subject differences from the prealtitude phase for altitude participant and all the data on control participants were used to estimate the analytical SD. The ‘true’ between-subject response to altitude was estimated from the within-subject differences on altitude participants, between the prealtitude and during-altitude phases, together with the estimated analytical SD. Results During-altitude Hbmass was estimated to increase by ∼1.1%/100 h for LHTL and classic altitude. Postaltitude Hbmass was estimated to be 3.3% higher than prealtitude values for up to 20 days. The within-subject SD was constant at ∼2% for up to 7 days between observations, indicative of analytical error. A 95% prediction interval for the ‘true’ response of an athlete exposed to 300 h of altitude was estimated to be 1.1–6%. Conclusions Camps as short as 2 weeks of classic and LHTL altitude will quite likely increase Hbmass and most athletes can expect benefit.
Medicine and Science in Sports and Exercise | 2010
Nicole Prommer; Stefanie Thoma; Lennart Quecke; Thomas Gutekunst; Christian Völzke; Nadine Wachsmuth; Andreas M. Niess; Walter Schmidt
UNLABELLED Several East Africans are among the most successful runners worldwide. The physiological reasons underlying this superiority are, however, not yet known. PURPOSE To evaluate the total hemoglobin mass (tHb-mass) and blood volume (BV) of Kenyan runners and their adaptation to near sea level. METHODS tHb-mass, BV, and VO2max were determined in 10 male Kenyan runners (10-km best time = 28:29 ± 00:27 min) residing at an altitude of 2090 m over the course of a 6-wk training camp at sea level. Their values were compared with those of elite German runners (10-km best time = 30:39 ± 00:24 min). RESULTS Kenyans are characterized by significantly lower body mass (Kenyans = 57.2 ± 7.0 kg; Germans = 66.5 ± 6.3 kg) and body mass index (Kenyans = 18.5 ± 0.9; Germans = 20.4 ± 0.9). Relative tHb-mass (Kenyans = 14.2 ± 1.0 g·kg(-1); Germans = 14.0 ± 0.7 g·kg(-1)) and BV (Kenyans = 101.9 ± 4.5 mL·kg(-1); Germans = 99.6 ± 5.8 mL·kg(-1)) were similar in both groups but were decreased in Kenyans during the stay at near sea level (absolute tHb-mass from 813 ± 90 g·mL(-1) to 767 ± 90 g, P < 0.001; BV from 5828 ± 703 g·mL(-1) to 5513 ± 708 mL, P < 0.01). Relative VO2max was similar in both groups (Kenyans 71.5 ± 5.0 mL·kg(-1)·min(-1); Germans 70.7 ± 3.7 mL·kg(-1)·min(-1)). CONCLUSION The oxygen transport of the blood cannot explain the superior endurance performance of Kenyan runners. Most measured parameters are in the same range as those of elite German runners, and tHb-mass even deteriorates after an adaptation to near sea level.
PLOS ONE | 2014
Andrew W. Subudhi; Nicolas Bourdillon; Jenna Bucher; Christopher Sean Davis; Jonathan E. Elliott; Morgan Eutermoster; Oghenero Evero; Jui Lin Fan; Sonja Jameson-Van Houten; Colleen G. Julian; Jonathan Kark; Sherri Kark; Bengt Kayser; Julia P. Kern; See Eun Kim; Corinna E. Lathan; Steven S. Laurie; Andrew T. Lovering; Ryan Paterson; David M. Polaner; Benjamin J. Ryan; James Spira; Jack W. Tsao; Nadine Wachsmuth; Robert C. Roach
An understanding of human responses to hypoxia is important for the health of millions of people worldwide who visit, live, or work in the hypoxic environment encountered at high altitudes. In spite of dozens of studies over the last 100 years, the basic mechanisms controlling acclimatization to hypoxia remain largely unknown. The AltitudeOmics project aimed to bridge this gap. Our goals were 1) to describe a phenotype for successful acclimatization and assess its retention and 2) use these findings as a foundation for companion mechanistic studies. Our approach was to characterize acclimatization by measuring changes in arterial oxygenation and hemoglobin concentration [Hb], acute mountain sickness (AMS), cognitive function, and exercise performance in 21 subjects as they acclimatized to 5260 m over 16 days. We then focused on the retention of acclimatization by having subjects reascend to 5260 m after either 7 (n = 14) or 21 (n = 7) days at 1525 m. At 16 days at 5260 m we observed: 1) increases in arterial oxygenation and [Hb] (compared to acute hypoxia: PaO2 rose 9±4 mmHg to 45±4 while PaCO2 dropped a further 6±3 mmHg to 21±3, and [Hb] rose 1.8±0.7 g/dL to 16±2 g/dL; 2) no AMS; 3) improved cognitive function; and 4) improved exercise performance by 8±8% (all changes p<0.01). Upon reascent, we observed retention of arterial oxygenation but not [Hb], protection from AMS, retention of exercise performance, less retention of cognitive function; and noted that some of these effects lasted for 21 days. Taken together, these findings reveal new information about retention of acclimatization, and can be used as a physiological foundation to explore the molecular mechanisms of acclimatization and its retention.
British Journal of Sports Medicine | 2013
Charli Sargent; Walter Schmidt; Robert J. Aughey; Pitre C. Bourdon; Rudy Soria; Jesus C Jimenez Claros; Laura A. Garvican-Lewis; Martin Buchheit; Ben M. Simpson; Kristal Hammond; Marlen Kley; Nadine Wachsmuth; Christopher J. Gore; Gregory D. Roach
Background Altitude training is used by elite athletes to improve sports performance, but it may also disrupt sleep. The aim of this study was to examine the effects of 2 weeks at high altitude on the sleep of young elite athletes. Methods Participants (n=10) were members of the Australian under-17 soccer team on an 18-day (19-night) training camp in Bolivia, with six nights at near sea level in Santa Cruz (430 m) and 13 nights at high altitude in La Paz (3600 m). Sleep was monitored using polysomnography during a baseline night at 430 m and three nights at 3600 m (immediately after ascent, 1 week after ascent and 2 weeks after ascent). Data were analysed using effect size statistics. Results All results are reported as comparisons with baseline. Rapid eye movement (REM) sleep was likely lower immediately upon ascent to altitude, possibly lower after 1 week and similar after 2 weeks. On all three nights at altitude, hypopneas and desaturations were almost certainly higher; oxygen saturation was almost certainly lower; and central apnoeas, respiratory arousals and periodic breathing were very likely higher. The effects on REM sleep were common to all but one participant, but the effects on breathing were specific to only half the participants. Conclusions The immediate effects of terrestrial altitude of 3600 m are to reduce the amount of REM sleep obtained by young elite athletes, and to cause 50% of them to have impaired breathing during sleep. REM sleep returns to normal after 2 weeks at altitude, but impaired breathing does not improve.
PLOS ONE | 2014
Benjamin J. Ryan; Nadine Wachsmuth; Walter Schmidt; William C. Byrnes; Colleen G. Julian; Andrew T. Lovering; Andrew W. Subudhi; Robert C. Roach
It is classically thought that increases in hemoglobin mass (Hbmass) take several weeks to develop upon ascent to high altitude and are lost gradually following descent. However, the early time course of these erythropoietic adaptations has not been thoroughly investigated and data are lacking at elevations greater than 5000 m, where the hypoxic stimulus is dramatically increased. As part of the AltitudeOmics project, we examined Hbmass in healthy men and women at sea level (SL) and 5260 m following 1, 7, and 16 days of high altitude exposure (ALT1/ALT7/ALT16). Subjects were also studied upon return to 5260 m following descent to 1525 m for either 7 or 21 days. Compared to SL, absolute Hbmass was not different at ALT1 but increased by 3.7±5.8% (mean ± SD; n = 20; p<0.01) at ALT7 and 7.6±6.6% (n = 21; p<0.001) at ALT16. Following descent to 1525 m, Hbmass was reduced compared to ALT16 (−6.0±3.7%; n = 20; p = 0.001) and not different compared to SL, with no difference in the loss in Hbmass between groups that descended for 7 (−6.3±3.0%; n = 13) versus 21 days (−5.7±5.0; n = 7). The loss in Hbmass following 7 days at 1525 m was correlated with an increase in serum ferritin (r = −0.64; n = 13; p<0.05), suggesting increased red blood cell destruction. Our novel findings demonstrate that Hbmass increases within 7 days of ascent to 5260 m but that the altitude-induced Hbmass adaptation is lost within 7 days of descent to 1525 m. The rapid time course of these adaptations contrasts with the classical dogma, suggesting the need to further examine mechanisms responsible for Hbmass adaptations in response to severe hypoxia.
British Journal of Sports Medicine | 2013
Nadine Wachsmuth; Marlen Kley; Hilde Spielvogel; Robert J. Aughey; Christopher J. Gore; Pitre C. Bourdon; Kristal Hammond; Charli Sargent; Gregory D. Roach; Rudy Soria Sánchez; Jesus C Jimenez Claros; Walter Schmidt; Laura A. Garvican-Lewis
Objectives The optimal strategy for soccer teams playing at altitude is not known, that is, ‘fly-in, fly-out’ versus short-term acclimatisation. Here, we document changes in blood gas and vascular volumes of sea-level (Australian, n=20) and altitude (Bolivian, n=19) native soccer players at 3600 m. Methods Haemoglobin-oxygen saturation (Hb-sO2), arterial oxygen content (CaO2), haemoglobin mass (Hbmass), blood volume (BV) and blood gas concentrations were measured before descent (Bolivians only), together with aerobic fitness (via Yo-YoIR1), near sea-level, after ascent and during 13 days at 3600 m. Results At baseline, haemoglobin concentration [Hb] and Hbmass were higher in Bolivians (mean±SD; 18.2±1.0 g/dL, 12.8±0.8 g/kg) than Australians (15.0±0.9 g/dL, 11.6±0.7 g/kg; both p≤0.001). Near sea-level, [Hb] of Bolivians decreased to 16.6±0.9 g/dL, but normalised upon return to 3600 m; Hbmass was constant regardless of altitude. In Australians, [Hb] increased after 12 days at 3600 m to 17.3±1.0 g/dL; Hbmass increased by 3.0±2.7% (p≤0.01). BV decreased in both teams at altitude by ∼400 mL. Arterial partial pressure for oxygen (PaO2), Hb-sO2 and CaO2 of both teams decreased within 2 h of arrival at 3600 m (p≤0.001) but increased over the following days, with CaO2 overcompensated in Australians (+1.7±1.2 mL/100 mL; p≤0.001). Yo-YoIR1 was lower on the 3rd versus 10th day at altitude and was significantly related to CaO2. Conclusions The marked drop in PaO2 and CaO2 observed after ascent does not support the ‘fly-in, fly-out’ approach for soccer teams to play immediately after arrival at altitude. Although short-term acclimatisation was sufficient for Australians to stabilise their CaO2 (mostly due to loss of plasma volume), 12 days appears insufficient to reach chronic levels of adaption.
British Journal of Sports Medicine | 2013
Gregory D. Roach; Walter Schmidt; Robert J. Aughey; Pitre C. Bourdon; Rudy Soria; Jesus C Jimenez Claros; Laura A. Garvican-Lewis; Martin Buchheit; Ben M. Simpson; Kristal Hammond; Marlen Kley; Nadine Wachsmuth; Christopher J. Gore; Charli Sargent
Background Altitude exposure causes acute sleep disruption in non-athletes, but little is known about its effects in elite athletes. The aim of this study was to examine the effects of altitude on two groups of elite athletes, that is, sea-level natives and high-altitude natives. Methods Sea-level natives were members of the Australian under-17 soccer team (n=14). High-altitude natives were members of a Bolivian under-20 club team (n=12). Teams participated in an 18-day (19 nights) training camp in Bolivia, with 6 nights at near sea level in Santa Cruz (430 m) and 13 nights at high altitude in La Paz (3600 m). Sleep was assessed on every day/night using activity monitors. Results The Australians’ sleep was shorter, and of poorer quality, on the first night at altitude compared with sea level. Sleep quality returned to normal by the end of the first week at altitude, but sleep quantity had still not stabilised at its normal level after 2 weeks. The quantity and quality of sleep obtained by the Bolivians was similar, or greater, on all nights at altitude compared with sea level. The Australians tended to obtain more sleep than the Bolivians at sea level and altitude, but the quality of the Bolivians’ sleep tended to be better than that of the Australians at altitude. Conclusions Exposure to high altitude causes acute and chronic disruption to the sleep of elite athletes who are sea-level natives, but it does not affect the sleep of elite athletes who are high-altitude natives.
British Journal of Sports Medicine | 2013
Robert J. Aughey; Kristal Hammond; Matthew C. Varley; Walter Schmidt; Pitre C. Bourdon; Martin Buchheit; Ben M. Simpson; Laura A. Garvican-Lewis; Marlen Kley; Rudy Soria; Charli Sargent; Gregory D. Roach; Jesus C Jimenez Claros; Nadine Wachsmuth; Christopher J. Gore
Objectives We investigated the effect of high altitude on the match activity profile of elite youth high altitude and sea level residents. Methods Twenty Sea Level (Australian) and 19 Altitude-resident (Bolivian) soccer players played five games, two near sea level (430 m) and three in La Paz (3600 m). Match activity profile was quantified via global positioning system with the peak 5 min period for distance ((D5peak)) and high velocity running (>4.17 m/s, HIVR5peak); as well as the 5 min period immediately subsequent to the peak for both distance (D5sub) and high-velocity running (HIVR5sub) identified using a rolling 5 min epoch. The games at 3600 m were compared with the average of the two near sea-level games. Results The total distance per minute was reduced by a small magnitude in the first match at altitude in both teams, without any change in low-velocity running. There were variable changes in HiVR, D5peak and HiVR5peak from match to match for each team. There were within-team reductions in D5peak in each game at altitude compared with those at near sea level, and this reduction was greater by a small magnitude in Australians than Bolivians in game 4. The effect of altitude on HiVR5peak was moderately lower in Australians compared with Bolivians in game 3. There was no clear difference in the effect of altitude on maximal accelerations between teams. Conclusions High altitude reduces the distance covered by elite youth soccer players during matches. Neither 13 days of acclimatisation nor lifelong residence at high altitude protects against detrimental effects of altitude on match activity profile.
British Journal of Sports Medicine | 2013
Martin Buchheit; Ben M. Simpson; Laura A. Garvican-Lewis; Kristal Hammond; Marlen Kley; Walter Schmidt; Robert J. Aughey; Rudy Soria; Charli Sargent; Gregory D. Roach; Jesus C Jimenez Claros; Nadine Wachsmuth; Christopher J. Gore; Pitre C. Bourdon
Objectives To examine the time course of wellness, fatigue and performance during an altitude training camp (La Paz, 3600 m) in two groups of either sea-level (Australian) or altitude (Bolivian) native young soccer players. Methods Wellness and fatigue were assessed using questionnaires and resting heart rate (HR) and HR variability. Physical performance was assessed using HR responses to a submaximal run, a Yo-Yo Intermittent recovery test level 1 (Yo-YoIR1) and a 20 m sprint. Most measures were performed daily, with the exception of Yo-YoIR1 and 20 m sprints, which were performed near sea level and on days 3 and 10 at altitude. Results Compared with near sea level, Australians had moderate-to-large impairments in wellness and Yo-YoIR1 relative to the Bolivians on arrival at altitude. The acclimatisation of most measures to altitude was substantially slower in Australians than Bolivians, with only Bolivians reaching near sea-level baseline high-intensity running by the end of the camp. Both teams had moderately impaired 20 m sprinting at the end of the camp. Exercise HR had large associations (r>0.5–0.7) with changes in Yo-YoIR1 in both groups. Conclusions Despite partial physiological and perceptual acclimatisation, 2 weeks is insufficient for restoration of physical performance in young sea-level native soccer players. Because of the possible decrement in 20 m sprint time, a greater emphasis on speed training may be required during and after altitude training. The specific time course of restoration for each variable suggests that they measure different aspects of acclimatisation to 3600 m; they should therefore be used in combination to assess adaptation to altitude.
Medicine and Science in Sports and Exercise | 2015
Ferran A. Rodríguez; Xavier Iglesias; Belén Feriche; Carmen Calderón-Soto; Diego Chaverri; Nadine Wachsmuth; Walter Schmidt; Benjamin D. Levine
INTRODUCTION This controlled, nonrandomized, parallel-groups trial investigated the effects on performance, V˙O2 and hemoglobin mass (tHbmass) of four preparatory in-season training interventions: living and training at moderate altitude for 3 and 4 wk (Hi-Hi3, Hi-Hi), living high and training high and low (Hi-HiLo, 4 wk), and living and training at sea level (SL) (Lo-Lo, 4 wk). METHODS From 61 elite swimmers, 54 met all inclusion criteria and completed time trials over 50- and 400-m crawl (TT50, TT400), and 100 (sprinters) or 200 m (nonsprinters) at best stroke (TT100/TT200). Maximal oxygen uptake (V˙O2max) and HR were measured with an incremental 4 × 200 m test. Training load was estimated using cumulative training impulse method and session RPE. Initial measures (PRE) were repeated immediately (POST) and once weekly on return to SL (PostW1 to PostW4). tHbmass was measured in duplicate at PRE and once weekly during the camp with CO rebreathing. Effects were analyzed using mixed linear modeling. RESULTS TT100 or TT200 was worse or unchanged immediately at POST, but improved by approximately 3.5% regardless of living or training at SL or altitude after at least 1 wk of SL recovery. Hi-HiLo achieved greater improvement 2 (5.3%) and 4 wk (6.3%) after the camp. Hi-HiLo also improved more in TT400 and TT50 2 (4.2% and 5.2%, respectively) and 4 wk (4.7% and 5.5%) from return. This performance improvement was not linked linearly to changes in V˙O2max or tHbmass. CONCLUSIONS A well-implemented 3- or 4-wk training camp may impair performance immediately but clearly improves performance even in elite swimmers after a period of SL recovery. Hi-HiLo for 4 wk improves performance in swimming above and beyond altitude and SL controls through complex mechanisms involving altitude living and SL training effects.